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NOMENCLATURE

Cb = equivalent moment factor for different loading and support conditions 
Ce = load eccentricity factor 
Cfix = end fixity adjustment = 1.15 
CL = beam stability factor 
Cw = warping constant 
d = depth of the member 
E = modulus of elasticity 
E'y05  = adjusted modulus of elasticity for bending about the weak axis at the 5th percentile 
G = torsional shear modulus 
G't05 = adjusted torsional shear modulus at the 5th percentile 
J = torsional constant for the section 
k  = constant based on loading and support conditions 
Ix = moment of inertia in the strong-axis (x-direction)  
Iy = moment of inertia in the weak-axis (y-direction)  

e = effective length which equals the unbraced length adjusted for specific loading and 
support conditions 

u = unbraced length 
M ' = adjusted moment resistance 
M * = moment resistance for strong axis bending multiplied by all applicable factors except 

Cfu, CV, and CL
M1 = minimum end moment 
M2 = maximum end moment 
MA = absolute value of moment at u/4
MB = absolute value of moment at u/2
MC = absolute value of moment at 3 u/4
Mcr  = critical buckling moment for specific loading and support conditions 
Mmax = absolute value of maximum moment 
Mocr = critical moment for the reference case (simply-supported beam under a constant 

moment) 
 = cross-section slenderness adjustment = 1 - Iy/Ix
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Part I: Basic Concepts of Lateral-Torsional Buckling 

1.1  INTRODUCTION 
Lateral-torsional buckling is a limit state where beam deformation includes in-plane 
deformation, out-of-plane deformation and twisting.  The load causing lateral instability is called 
the elastic lateral-torsional buckling load and is influenced by many factors such as loading and 
support conditions, member cross-section, and unbraced length. In the 2001 and earlier versions 
of the National Design Specification® (NDS®) for Wood Construction [1] the limit state of 
lateral torsional buckling is addressed using an effective length format whereby unbraced lengths 
are adjusted to account for load and support conditions that influence the lateral-torsional 
buckling load.  Another common format uses an equivalent moment factor to account for these 
conditions.  This report describes the basis of the current effective length approach used in the 
NDS and summarizes the equivalent uniform moment factor approach; provides a comparison 
between the two approaches; and proposes modification to NDS design provisions.

1.2  BACKGROUND
Design of an unbraced beam requires determination of the minimum moment which induces 
buckling.  When a beam--one that is braced at its ends to prevent twisting at bearing points, but 
which is otherwise unbraced along 
its length--is loaded in bending 
about the strong axis so that lateral 
torsional buckling is induced, three 
equilibrium equations may be 
written for the beam in its displaced 
position: one equation associated 
with strong axis bending; one 
equation associated with weak axis 
bending, and one equation 
associated with twisting (see Figure 
1). Using these equations of 
equilibrium, a set of differential 
equations can be developed which, 
when solved, provides the critical 
moment, Mcr.  A closed-form 
solution for the case of a simply-
supported beam under a constant 
moment has been widely discussed 
and derivations can be found in the 
literature and are provided in 
Appendix A. The critical moment, 
Mocr, for this reference case of a simply-supported beam under constant moment is given by:

GJEIM y
u

ocr (1)

Figure 1.  Lateral-Torsional Buckling of a Beam
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where:
Mocr = critical moment for the reference case (simply-supported beam under a 

constant moment) 
u = unbraced length 

E = modulus of elasticity 
Iy = moment of inertia in the weak-axis (y-direction)  
G = torsional shear modulus 
J = torsional constant for the section 

Determination of the torsional constant, J, is beyond the scope of this document.  However, 
equations for determining the value of J for common shapes are provided in the literature 
[2][3][6].

1.2.1  Effect of Beam Slenderness
Equation 1 was derived for slender beams where the in-plane flexural rigidity (EIx) is much 
larger than the out-of-plane flexural rigidity (EIy). Federhofer and Dinnik [2] found this 
assumption to be conservative for less slender beams.  To adjust for this conservatism in less 
slender beams where the flexural rigidities in each direction are of the same order of magnitude, 
Kirby and Nethercot [3] suggested dividing Iy by the term , where  =1-Iy/Ix and Ix is the 
moment of inertia about the strong-axis. 

1.2.2 Effect of Loading and Support Conditions
Equation 1 applies to a single loading condition (simply-supported beam under a constant 
moment).  Many other loading and beam support conditions are commonly found in practice for 
which the magnitude of the critical moment needs to be determined.  A closed-form solution is 
not available for these conditions and differential equations found in the derivation must be 
solved by other means including solution by numerical methods, infinite series approximation 
techniques, finite element analysis, or empirically.  Solutions for common loading and beam 
support conditions have been developed and are provided in design specifications and textbooks. 
Solution techniques used to solve several common loading conditions and approximation 
techniques used to estimate adjustments for other loading conditions are discussed in more detail 
in Appendix A.1. 

1.2.2.1  Adjusting for Loading and Support Conditions
Two methods are used to adjust Equation 1 for different loading and support conditions. The 
effective length approach and the equivalent moment factor approach.  Both of these methods 
adjust from a reference loading and support condition. 

1.2.2.1.1  Effective Length Approach
The effective length approach adjusts the reference case critical moment, Mocr, to other loading 
and support conditions by adjusting the unbraced length to an “effective length” as provided in 
Equation 2: 

GJEIM y
e

cr (2)

where:
Mcr = critical moment for specific loading and support conditions 

e = effective length which equals the unbraced length adjusted for specific 
loading and support conditions 
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1.2.2.1.2  Equivalent Moment Factor Approach
The equivalent moment factor approach adjusts the reference case critical moment, Mocr, to other 
loading and support conditions using an equivalent moment factor, Cb, as provided in Equation 
3:

ocrbcr MCM (3)
where:

Cb = equivalent moment factor 

Prior to 1961, the steel industry used an effective length approach to distinguish between 
different loading and support conditions.  In 1961, the American Institute of Steel Construction 
(AISC) adopted the equivalent moment factor approach.  This approach expanded application of 
beam stability calculations to a wider set of loading and support conditions. 

The empirical equation used for design of steel beams when estimating the equivalent moment 
factor, Cb, has changed over the last 40 years.  The original equation for estimating Cb was: 

3.23.005.175.1
2

2

1

2

1

M
M

M
MCb (4)

where:
M1 = minimum end moment 
M2 = maximum end moment 

Equation 4 provides accurate estimates of Cb in cases where the slope of the moment diagram is 
constant (a straight line) between braced points but does not apply to beams bent in reverse 
curvature.  For this reason, it is only recommended for M1/M2 ratios which are negative (with 
single curvature i.e. M1/M2 < 0) [4]. 

Equation 5 was developed for cases where slope of the moment diagram is constant between 
braced points and better matches the theoretical solution for beams bent in single and reversed 
curvature [4].  This equation is of the form: 

5.2
4.06.0

1

2

1

M
M

Cb (5)

To address limitations of Equations 4 and 5 and to avoid misapplication of these equations, 
Kirby and Nethercot [3] proposed the following empirical equation which uses a moment-fitting 
method to estimate Cb:

max

max

2343
12

MMMM
MC

CBA
b (6)

where:
MA = absolute value of moment at u/4
MB = absolute value of moment at u/2
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MC = absolute value of moment at 3 u/4
Mmax = absolute value of maximum moment 

The following modified version of the Kirby and Nethercot equation appeared in AISC’s 1993 
Load and Resistance Factored Design Specification for Structural Steel Buildings [4].  This 
equation  provides a lower bound across the full range of moment distributions in beam segments 
between points of bracing:

CBA
b MMMM

MC
3435.2

5.12

max

max (7)

1.2.3  Effect of Load Position Relative to Neutral Axis 
Equation 1 assumes that loading is through the neutral axis of the member.  In cases where the 
load is above the neutral axis at an unbraced location, an additional moment is induced due to 
displacement of the top of the beam relative to the neutral axis. This additional moment due to 
torsional eccentricity reduces the critical moment.  Similarly, a load applied below the neutral 
axis increases the critical moment.  The design literature provides several means of addressing 
the effects of load position [2][5][6][10]. 

1.2.3.1  Adjusting for Load Position Relative to Neutral Axis
There are generally two methods used to adjust Equation 1 for load position relative to the 
neutral axis.  One method adjusts the effective length previously discussed in 1.2.2.1.1.  The 
second method uses a load eccentricity factor, Ce.   Derivation of this factor has been reviewed in 
the literature [2][10] and is provided in Appendix A.2.  The eccentricity factor takes the form of: 

12
eC (8)

GJ
EIkd y

u2
(9)

where:
Ce = load eccentricity factor 
k  = constant based on loading and support conditions 
d = depth of the member 

Flint [10] demonstrated numerically, that Equation 9 is accurate for a single concentrated load 
case where  lies between -0.34 and +1.72 (negative values indicate loads applied below the 
neutral axis and positive values indicate loads applied above the neutral axis).  Limiting to a 
maximum value of 1.72 limits Ce to a minimum value of 0.27. 

1.2.4  Non-Rectangular Beams
Equation 1 under-predicts the critical moment for beams with non-rectangular cross-sections, 
such as I-beams.  For more accurate predictions of the critical moment for simply supported non-
rectangular beams under uniform moment, an additional term can be added to account for 
increased torsional resistance provided by warping of the cross-section [2]: 



AMERICAN FOREST & PAPER ASSOCIATION 

                TECHNICAL REPORT NO. 14  5

wy
u

y
u

ocr CIEGJEIM
2

(10)

where:
Cw = warping constant 

Procedures for calculating the warping constant, Cw, are beyond the scope of this document; 
however, procedures exist in the literature [2][6].  For many cross-sections, Equation 10 is 
overly complicated and can be simplified by conservatively ignoring the increased resistance 
provided by warping. 

1.2.5 Cantilevered and Continuous Beams
Currently, there is a lack of specific lateral-torsional buckling design provisions for cantilevered 
and continuous beams.  For cantilevered beams, direct solutions for a few cases have been 
developed and are available in the literature [2][3][4][6][11] and have been reprinted in Tables 1 
and 2.  However, for other load cases of cantilevered beams which are unbraced at the ends, 
approximation equations, such as Equation 7, do not apply.  For these cases, designers have used 
conservative values for Cb and k.  Derivation of Cb and k values for additional cantilevered load 
cases is beyond the scope of this report. 

Provisions in this report also apply to continuous beams.  However, since there are various levels 
of bracing along the compression edge of continuous beams and at interior supports, applying 
beam stability provisions may be confusing.  As a result, most continuous beams are designed 
with additional full-height bracing at points of interior bearing. 

To clarify how to use the provisions in this report to design continuous beams, it must be clear 
that the derivation of Equation 1 assumes that there is no external lateral load applied about the 
weak axis of the beam through bracing, supports, or otherwise. Also, it assumes that supports at 
the ends of members are laterally braced. Additional considerations are required for continuous 
beams. A continuous beam can be assumed to be braced adequately at interior supports if 
provisions are made to prevent displacement of the tension edge of the beam relative to the 
compression edge. Such provisions include providing full-height blocking, providing both 
tension and compression edge sheathing at the interior supports, or having one edge braced by 
sheathing and the other edge braced by an adequately designed wall. Otherwise, the designer has 
to use judgment as to whether to consider the beam to have an unbraced length equal to the full 
length of the member between points of bracing, an unbraced length measured from the 
inflection point, or an unbraced length that is between these two conditions. The designer’s 
judgment should consider the sheathing stiffness and the method of attachment to the beam. A 
beam that is about to undergo lateral torsional buckling develops bending moments about its 
weak axis and these moments can extend beyond inflection points associated with strong axis 
bending. Further research is being considered to quantify the roles that tension side bracing and 
inflection points have on the tendency for lateral torsional buckling.  

1.2.6 Beam Bracing
Derivation of equations in this report are based on the assumption that member ends at bearing 
points are braced to prevent rotation (twisting), even in members otherwise considered to be 
unbraced. In addition, effective beam bracing must prevent displacement of the beam 
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compression edge relative to the beam tension edge (i.e. twisting of the beam).  There are two 
types of beam bracing, lateral and torsional.  Lateral bracing, such as sheathing attached to the 
compression edge of a beam, is used to minimize or prevent lateral displacement of the beam, 
thereby reducing lateral displacement of the compression edge of the beam relative to the tension 
edge.  Torsional bracing, such as cross-bridging or blocking, is used to minimize or prevent 
rotation of the cross-section.  Both bracing types can be designed to effectively control twisting 
of the beam; however, steel bracing systems that provide combined lateral and torsional bracing, 
such as a concrete slab attached to a steel beam compression edge with shear studs, have been 
shown to be more effective than either lateral or torsional bracing acting alone (Mutton and 
Trahair [7a]) (Tong and Chen [7b]).  Design of lateral and/or torsional bracing for wood beams is 
currently beyond the scope of this document; however, further research is being considered to 
quantify and develop design provisions for lateral and torsional bracing systems.  Guidance for 
steel bracing systems is provided in Yura [5] and Galambos [6].  

1.2.6.1 Lateral Bracing 
There are four general types of lateral bracing systems; continuous, discrete, relative, and lean-
on.  The effectiveness and design of lateral bracing is a function of bracing type, brace spacing, 
beam cross-section and induced moment. Lateral bracing is most effective when attached to the 
compression edge and has little effect when bracing the neutral axis (Yura [5]).  

1.2.6.2 Torsional Bracing 
There are two general types of torsional bracing; continuous and discrete.  The effectiveness and 
design of torsional bracing is significantly affected by the cross-sectional resistance to twisting. 

1.3  HISTORY OF THE NDS BEAM STABILITY EQUATIONS

In early editions of the NDS, beam stability was addressed using prescriptive bracing provisions.  
The effective length approach (see 1.2.2.1.1) for design of bending members was introduced in 
the 1977 NDS.   Basic load and support cases addressed in the 1977 NDS were as follows: 

1.  A simply-supported beam with: 
- uniformly-supported load – unbraced along the loaded edge 
- a concentrated load at midspan – unbraced at the point of load 
- equal end moments ( opposite rotation ) 

2. A cantilevered beam with: 
- uniformly distributed load- unbraced along the loaded edge 
- concentrated load at the free-end – unbraced at the point of load 

3.  A conservative provision for all other load and support cases 

Provisions for these load and support conditions were derived from a report by Hooley and 
Madsen [7].  Hooley and Madsen used a study by Flint [10] to derive simple effective length 
equations to adjust the unbraced lengths for the above mentioned load cases and loads applied at 
the top of beams.  In addition, Hooley and Madsen recommended that the unbraced length be 
increased 15% to account for imperfect torsional restraint at supports.  Derivation of these 
provisions and comparisons are presented in Appendix B. 
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In 1991, the NDS provisions were expanded to cover a wider range of load cases based on a 
study by Hooley and Devall [8].  In addition, some load cases were changed [9]. 

1.3.1 Comparison Between e Approach and Cb Approach
In the NDS provisions which use an effective length approach to adjust for different load and 
support conditions, the buckling stress, FbE, is calculated using a modified form of Equation 2 
which has been simplified for rectangular beams (see Appendix B).  The equation was derived 
for a simply-supported beam with a concentrated load at midspan - unbraced at point of load, as 
provided in Equation 11.  Additional loading conditions were derived and the effective length 
equations were adjusted to this reference condition. 

e

y
cr

EI
M

40.2
(11)

where:
e = 1.37 u, for a simply-supported beam with a concentrated load at midspan 

- unbraced at point of load 

For the reference condition (simply-supported beam with a constant moment) in Equation 1, the 
NDS effective length equation is: e = 1.84 u.  The equivalent moment factor approach and the 
NDS effective length approach can be compared by recognizing that, for the reference condition, 
Cb = 1.0 and e = 1.84 u.  Therefore, Cb = 1.84 u / e.  Solving for e yields:

u
b

e C
84.1

(12)

Table 1 compares effective lengths derived using Equations 7 and 12 and effective lengths 
tabulated in the 2001 NDS.  It should be noted that some of the NDS effective length equations 
are inconsistent with estimates from Equations 7 and 12.  In cases where a load can be applied 
on the compression edge of a beam, NDS Table 3.3.3 assumes that the beam is always loaded on 
the compression edge.  For cases not explicitly covered in Table 3.3.3 of the NDS, the most 
severe effective length assumption applies (i.e.  1.84 u < e < 2.06 u).  In addition, Hooley and 
Duvall assumed that effective lengths for beams loaded at multiple points could be estimated by 
interpolating between the single concentrated load case and the uniform load case.  This 
assumption is inconsistent with assumptions used in the derivation of the equations and the 
equivalent moment factors. 
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Table 1.  Comparison of Equivalent Moment Factor Approach with NDS Effective Length Provisions 
(for beams loaded through the neutral axis) 

Equivalent Moment Factor 
Approach 2001 NDS Table 3.3.3

Loading Condition
Lateral
Support
@ Load

Cb

(Eqn. 7)
Effective Length, e

(Eqn. 12)
Effective Length, e

(NDS tabulated values)
Single Span Beams

Uniformly distributed load No 1.13 e  = 1.63 u e  = 1.63 u  + 3d 

No 1.35 e  = 1.37 u e  = 1.37 u  + 3d Concentrated load @ center 

Yes 1.67 e  = 1.10 u e  = 1.11 u

No 1.14 e  = 1.61 u 1.84 u  < e  < 2.06 uTwo equal conc. loads @ 1/3 points 

Yes 1.00 e  = 1.84 u e  = 1.68 u

No 1.14 e  = 1.61 u 1.84 u  < e  < 2.06 uThree equal conc. loads @ 1/4 points 

Yes 1.11 e  = 1.66 u e  = 1.54 u

No 1.14 e  = 1.62 u 1.84 u < e  < 2.06 uFour equal conc. loads @ 1/5 points 

Yes 1.00 e  = 1.84 u e  = 1.68 u

No 1.14 e  = 1.62 u 1.84 u  < e  < 2.06 uFive equal conc. loads @ 1/6 points 

Yes 1.05 e  = 1.75 u e  = 1.73 u

No 1.13 e  = 1.63 u 1.84 u  < e  < 2.06 uSix equal conc. loads @ 1/7 points 

Yes 1.00 e  = 1.84 u e  = 1.78 u

No 1.13 e  = 1.63 u 1.84 u  < e  < 2.06 uSeven equal conc. loads @ 1/8 points 

Yes 1.03 e  = 1.79 u e  = 1.84 u

No 1.13 e  = 1.63 u 1.84 u  < e  < 2.06 uEight or more equal conc. loads @ equal spacings

Yes 1.00 e  = 1.84 u e  = 1.84 u

Equal end moments (opposite rotation) - 1.00 e  = 1.84 u e  = 1.84 u

Equal end moments (same rotation) - 2.30 e  = 0.80 u 1.84 u  < e  < 2.06 u

Cantilever Beams

Uniformly distributed load No 2.05 e  = 0.90 u e  = 0.90 u  + 3d 

Concentrated load @ unbraced end No 1.28 e  = 1.44 u e  = 1.44 u  + 3d 

d = depth of the member 

1.4 EQUIVALENT MOMENT METHOD FOR DESIGN OF WOOD BENDING MEMBERS

Design provisions for lateral-torsional buckling of wood bending members are contained in the 
general design provisions for bending in the NDS [1] and ASCE 16 [4].  In the NDS, an 
adjustment is made to the bending stress, Fb*, by applying a beam stability factor, CL, that 
accounts for the ratio of the buckling stress, FbE, to the bending stress, Fb*.  Adjustments for 
loading, support, and load eccentricity conditions are made to FbE through use of tabulated 
effective lengths, e (see 1.2.2.1.1). 
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In ASCE 16, lateral-torsional buckling is addressed in a similar manner.  An adjustment is made 
to the strong-axis bending moment, Mx*, by applying a beam stability factor, CL, that accounts 
for the ratio of the elastic lateral buckling moment, Me, to the strong-axis bending moment, Mx*.
Note that the elastic lateral buckling moment, Me, is equivalent to the critical moment, Mcr,
derived in earlier sections of this document.  For prismatic beams, adjustments for loading, 
support, and load eccentricity conditions are made to Me through the use of tabulated effective
lengths, e.  For non-prismatic beams, adjustments for loading and support conditions are made 
using equivalent moment factors, Cb (see 1.2.2.1.2), Values for Cb are calculated using Equation 
4 (see 1.2.2.1.2 for limitations on use of Equation 4). 

A new, more comprehensive method for design of wood bending members is provided in Part II 
of this document.  The new method uses the ASCE 16 format of applying a beam stability factor, 
CL, to the strong-axis bending moment, Mx* to account for the ratio Mcr (also known as the 
elastic lateral buckling moment, Me), to Mx*.  This method incorporates the use of equivalent 
moment factors (1.2.2.1.2) and load eccentricity factors (see 1.2.3.1) to account for the effects of 
loading, support, and load eccentricity effects on the critical moment, Mcr.
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Part II: Design Method for Lateral-Torsional Buckling

2.1 CONDITIONS OF LATERAL SUPPORT

2.1.1 General
When a bending member is bent about its strong axis and the moment of inertia about the strong 
axis (Ix) exceeds the moment of inertia about the weak axis (Iy), the weak axis shall be braced in 
accordance with 2.1.2 or the moment capacity in the strong axis direction shall be reduced per 
2.1.3.

2.1.2 Bracing of Compression Edge
The compression edge of a bending member shall be braced throughout its length to prevent 
lateral displacement and the ends at points of bearing shall have lateral support to prevent 
rotation.  The adjusted moment resistance, M ', about the strong-axis of a member laterally 
braced as noted above is: 

*MM (13)
 where: 

M ' = adjusted moment resistance 
M * = moment resistance for strong axis bending multiplied by all 

applicable factors except Cfu, CV, and CL.

2.1.3 Moment Resistance of Members Without Full Lateral Support
The adjusted moment resistance about the strong axis of members that are not laterally braced 
for their full length or a portion thereof is: 

*MM LC (14)
where:

CL = beam stability factor (2.1.3.1) 

2.1.3.1 Beam Stability Factor
The beam stability factor, CL, shall be calculated as:  

95.090.1
1

90.1
1 2

bbb
LC (15)

*M
M cr

b (16)

where:
Mcr = critical buckling moment 

When the volume effect factor, CV, is less than 1.0, the lesser of CL or CV shall be used to 
determine the adjusted moment resistance. 
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2.1.3.2 Critical Buckling Moment
The critical buckling moment, Mcr, shall be calculated as: 

JGIE
C

CCM tyy

ufix

eb
cr

0505 (17)

where:
Cb = equivalent moment factor for different loading and support 

conditions (2.1.3.3) 
Ce = load eccentricity factor for top-loaded beams (2.1.3.4) 
Cfix = end fixity adjustment (see 1.3) = 1.15 

u = unbraced length 
E'y05  = adjusted modulus of elasticity for bending about the weak 

axis at the fifth percentile 
Iy = weak axis moment of inertia 
G't05 = adjusted torsional shear modulus at the fifth percentile 
J = torsional constant 
 = cross-section slenderness adjustment = 1 - Iy/Ix

For rectangular bending members, the critical buckling moment shall be permitted to be 
calculated as (see Appendix C.1 for derivation): 

u

yyeb
cr

IECC
M 053.1

(18)

2.1.3.3  Equivalent Moment Factor
The equivalent moment factor, Cb, for different loading and support conditions shall be taken 
from Table 2 or, for beam segments between points of bracing, calculated as: 

max

max

5.2343
5.12

MMMM
MC

CBA
b (19)

where:
Mmax  = absolute value of maximum moment 
MA = absolute value of moment at /4
MB = absolute value of moment at /2
MC = absolute value of moment at 3 /4

For all loading and support conditions, Cb is permitted to be conservatively taken as 1.0. 

2.1.3.4  Load Eccentricity Factor for Beams Loaded on the Compression-Side
When a bending member is loaded from the tension-side or through the neutral axis, Ce=1.0
which is conservative for cases where the bending member is loaded from the tension-side 
[2][7][10].  When a bending member is loaded from the compression-side of the neutral axis and 
is braced at the point of load, Ce=1.0.  When a bending member is loaded from the compression-
side of the neutral axis and is unbraced at the point of load, the load eccentricity factor shall be 
calculated as: 
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12
eC  (20)

where:

JG
IEkd

t

yy

u 05

05

2
(21)

k   =    constant based on loading and support conditions (Table 2). For all 
loading cases, k can conservatively be taken as 1.72. 

The minimum value of Ce need not be taken as less than 0.27.

For rectangular bending members,  shall be permitted to be calculated as (see Appendix C.2 for 
derivation):

u

kd3.1
(22)

Table 2. Cb and k Factors for Different Loading Conditions

Laterally Braced 
@ point of loading

Laterally Unbraced 
@ point of loadingLoading Condition

Cb Cb k

Single Span Beams

Concentrated load @ center 1.67 1.35 1.72

Two equal conc. loads @ 1/3 points 1.00 1.14 1.63

Three equal conc. loads @ 1/4 points 1.11 1.14 1.45

Four equal conc. loads @ 1/5 points 1.00 1.14 1.51

Five equal conc. loads @ 1/6 points 1.05 1.14 1.45

Six equal conc. loads @ 1/7 points 1.00 1.13 1.47

Seven equal conc. loads @ 1/8 points 1.03 1.13 1.44

Eight or more equal conc. loads @ equal spacings 1.00 1.13 1.46

Uniformly distributed load 1.00 1 1.13 1.44

Equal end moments (opposite rotation) 1.00 --- ---

Equal end moments (same rotation) 2.30 --- ---

Cantilever Beams

Concentrated load @ end 1.67 1.28 1.00

Uniformly distributed load 1.00 1 2.05 0.90
1 The unbraced length, u, in these cases is zero; therefore, the beam is considered fully-braced with 
CL=1.0.
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2.1.3.5 Special Design Considerations for Cantilevered Beams
For cantilevered beams, direct solutions for two cases have been developed and are provided in 
Table 2; however, for other load cases of cantilevered beams which are unbraced at the ends, 
Equation 18 does not apply.  For these cases, designers are required to use conservative values of 
Cb = 1.0 and k = 1.00. 

2.1.3.6 Special Design Considerations for Continuous Beams
For continuous beams, values for Cb and k vary depending on the location of bracing.  A 
continuous beam can be assumed to be adequately braced at an interior support if full-height 
blocking or tension and compression edge bracing at supports are used to prevent displacement 
of the tension edge of the beam relative to the compression edge.  Otherwise the beam should be 
designed as unbraced for the full length of the beam between points of bracing. 

2.2 COMPARISON OF NEW CALCULATION METHOD AND EXPERIMENTAL DATA
In 1961, Hooley and Madsen tested 33 beams with various b/d ratios, loading conditions, and 
support conditions [7].  Using behavioral equations taken from the design procedure outlined in 
2.1, the Hooley and Madsen data was analyzed.  A comparison of the predicted bending strength 
with the observed bending strength is plotted in Figure 2. 

Figure 2. Comparison of New Calculation Method with Test Data
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Part III:  Example Problems

Example problems are based on the application of the new beam stability provisions in Part II. 

Example 3.1 - Beams Braced at Intermediate Points 

Problem Statement: Design a glulam beam to be used as a ridge 
beam braced with roof joists spaced at 4 feet on center along its 
length. 

Given: The span of the ridge beam, , is 28 feet.  The design loads 
are wdead = 75 plf and wsnow = 300 plf.  The roof joists are attached 
to the sides of the ridge beam providing adequate bracing of the 
beam; therefore, for calculating the beam buckling moment the 
unbraced length of the beam, u, can be assumed to be 48 inches.   

Calculate the maximum induced moment: 
 Mmax = (wdead+wsnow) 2 / 8 = (375)(282)/8 = 36,750 ft-lb 

Select a 2½" x 21" 24F-V4 Douglas fir glulam beam: 
 Fbx =        2,400 psi 
 Ey = 1,600,000 psi 

Calculate properties: 
 Fbx

* = FbxCD CM Ct Cfu Ci
  = (2,400)(1.15)(1.0)(1.0)(1.0)(1.0) = 2,760  psi 
 E'y05 = Ey (1-1.645COVE)(Adjust to shear-free E)/(Safety Factor) 
  = (1,600,000)[1-1.645(0.11)](1.05)/(1.66) = 1,600,000/1.93 = 829,000 psi 

 Sx = bd2/6 = (2.5)(212)/6 = 183.8 in.3
 Ix = bd3/12 = (2.5)(213)/12 = 1929 in.4
 Iy = db3/12 = (21)(2.53)/12 = 27.34 in.4
 CV = (21/ )1/x (12/d)1/x (5.125/b)1/x where x = 10 
  (21/28)0.1 (12/21)0.1 (5.125/2.5)0.1 = 0.9871 

Calculate buckling moment capacity: 
 Cb = 1.00  (assuming 6 roof joists, from Table 2) 
 Ce = 1.00  (assuming braced at point of load) 
 Mcr = 1.3 Cb Ce Ey05' Iy / u = 1.3(1.0)(1.0)(829,000)(27.34)/(48) = 613,800 in-lb     or     51,150 ft-lb 

Calculate allowable bending moment: 
 M* = Fbx

* Sx = (2,760)(183.8) = 507,300 in-lb     or     42,250 ft-lb 
b = Mcr/M* = 51,150/42,250 = 1.21 

88.
95.0
21.1

9.1
21.11

9.1
21.11

95.09.1
1

9.1
1 22

bbb
LC

M' = M* (lesser of CV or CL) = (42,250)(0.88) = 37, 250 ft-lb 

Structural Check:  M'  Mmax  37,250 ft-lb  36,750 ft-lb  
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Case 1.  Top edge unbraced, interior bearing point braced

Example 3.2 - Continuous Span Beams 

Problem Statement: Determine Cb, k, and u values for a two-span continuous beam subjected 
to a uniformly distributed gravity load.  Compare these values for the following bracing 
conditions:

1.  Top edge unbraced, interior bearing point braced. 
2.  Top edge unbraced, interior bearing point unbraced. 

Given: The beam has two equal spans of length, .  The value for Cb can be calculated for each 
case using Equation 18: 

max

max

5.2343
5.12

MMMM
MC

CBA
b

Case 1: The top edge of the beam is in compression from the end to the inflection point of the beam (0.75 ) and is 
unbraced.  The interior bearing point is braced relative to the top tension edge of the beam.  Therefore, this case has 
two unbraced lengths, u, each spanning from the end of the beam to the interior support ( u = ).  Since a value for k 
has not been derived, assume k=1.72.  The quarter-point moments for this case are as follows: 

Top edge unbraced

Interior bearing provides lateral bracing

              | u                    | u                   | 

Mmax  = -0.1250w 2 @ interior bearing    
MA =  0.0625w 2 at x=0.25
MB =  0.0625w 2 at x=0.5
MC =  0.0000 at x=0.75

08.2
)1250.0(5.2)0000.0(3)0625.0(4)0625.0(3

)1250.0(5.12
2222

2

wwww
wCb
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Case 2.  Top edge unbraced, interior bearing point unbraced

Case 2: The top edge of the beam is in compression from the end to the inflection point of the beam (0.75 ) and is 
unbraced.  The interior bearing point is unbraced.  Therefore, this case has one unbraced length, u, which spans 
between the ends of the beam ( u = 2 ).  Since a value for k has not been derived, assume k=1.72.  The quarter-point 
moments for this case are as follows: 

Top edge unbraced

Interior bearing does not provide lateral bracing

                                 |                                        u |

Mmax  = -0.1250w 2 @ interior bearing 
MA =  0.0625w 2 at x=0.5
MB = -0.1250w 2 at x=
MC =  0.0625w 2 at x=1.5

   

32.1
)1250.0(5.2)0625.0(3)1250.0(4)0625.0(3

)1250.0(5.12
2222

2

wwww
wCb

Note: This example assumes that there are no external lateral forces being resisted by the beam and/or interior 
support.  If lateral forces are being resisted by the beam in the weak axis direction, a different analysis including 
the effects on beam stability, should be considered. 
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Example 3.3 - Cantilevered Ceiling Joists 

Problem Statement: Determine the impact of bracing the end of a cantilevered ceiling joist that 
is unbraced on the compression (bottom) edge. 

Given: A ceiling is designed with a cantilevered span of 4 feet.  The beam is laterally braced at 
the supporting walls.  The cantilever is supporting a concentrated load at the end of the 
cantilever.  Design the cantilever with #2 Southern pine 2x12 joists spaced at 2 feet on center.

From Table 4B of the NDS Supplement: 
 Fbx =           975 psi 
 Ey = 1,600,000 psi 

Calculate properties: 
 Fbx

* = FbxCD CM Ct CF Cfu Ci Cr
  = (975)(1.0)(1.0)(1.0)(1.0)(1.0)(1.0)(1.15) = 1,121 psi 
 E'y05 = Ey (1-1.645COVE)(Adjust to shear-free E)/(Safety Factor) 
  = (1,600,000)[1-1.645(0.25)](1.03)/(1.66) = 1,600,000/2.74 = 584,500 psi 

 Sx = bd2/6 = (1.5)(11.252)/6 = 31.64 in.3
 Ix = bd3/12 = (1.5)(11.253)/12 = 178.0 in.4
 Iy = db3/12 = (11.25)(1.53)/12 = 3.164 in.4

Without End Bracing

Calculate buckling moment capacity: 
 Cb = 1.28 k = 1.0  (from Table 2) 

 = 1.3kd/ u = 1.3(1.0)(11.25)/48 = 0.3047 
 Ce = ( 2 + 1)0.5 -  = (0.30472 + 1)0.5 - 0.3047 = 0.7407 
 Mcr = 1.3 Cb Ce Ey05' Iy / u = 1.3(1.28)(0.7407)(584,494)(3.164)/48 = 47,487 in-lb or 3,957 ft-lb 

Calculate allowable bending moment: 
 Mx

* = Fbx
* Sx = (1,121)(31.64) = 35,468 in-lb or 2,956 ft-lb 

b = Mcr/Mx
* = 3,957/2,956 = 1.339 

905.0
95.0

339.1
9.1
339.11

9.1
339.11 2

LC

Mx' = Mx
* CL = (2,956)(0.905) = 2,676 ft-lb. 
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With End Bracing 

Calculate buckling moment capacity: 
 Cb = 1.67  (from Table 2) 
 Ce = 1.00  (assuming braced at point of load) 
 Mcr = 1.3 Cb Ce Ey05' Iy / u = 1.3(1.67)(1.00)(584,494)(3.164)/48 = 83,644 in-lb or 6,970 ft-lb 

Calculate allowable bending moment: 
 Mx

* = Fbx
* Sx = (1,121)(31.64) = 35,468 in-lb or 2,956 ft-lb 

b = Mcr/Mx
* = 6,970/2,956 = 2.358 

966.0
95.0
358.2

9.1
358.21

9.1
358.21 2

LC

Mx' = Mx
* CL = (2,956)(0.966) = 2,857 ft-lb. 

Note: This example assumes that there are no external lateral forces being resisted by the beam and/or interior 
support.  If lateral forces are being resisted by the beam in the weak axis direction, a different analysis including 
the effects on beam stability should be considered.
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Appendix A 
Derivation of Lateral-Torsional Buckling Equations

A.1  GENERAL
An unbraced beam loaded in the strong-axis is free to displace and rotate as shown in Figure A1.  
This displacement and rotation can be represented by three equations of equilibrium which 
equate the externally applied moment to the internal resisting moment: 

1.  moment in the strong-axis direction: 2

2

dz
vdEIM xext (A1)

2.  moment in the weak-axis direction:                    2

2

dz
udEIM yext (A2)

3.  twisting moment:                                             
dz
dGJM

dz
du

ext (A3) 

Figure A1.  Lateral-Torsional Buckling of a Beam 

Equation A1 describes the strong axis bending behavior of a beam and, for small displacements, 
is independent of Equations A2 and A3.  Equations A2 and A3 are coupled.  By differentiating 
Equation A3 with respect to z and substituting the result into Equation A2, the two equations can 
be combined to form the following second-order differential equation: 

0
2

2

2

GJEI
M

dz
d

y

ext (A4)

A.1.1  CLOSED-FORM SOLUTION
If a beam has a constant cross-section and a constant induced moment, Mo, along the unbraced 
length, L,  there is a closed-form solution to Equation A4.  By defining a constant k2=Mo

2/EIyGJ,
Equation A4 can be rewritten as:
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02
2

2

k
dz
d

(A5)

Equation A5 is a second-order linear differential equation with a general solution of: 

kzBkzA cossin (A6)

Given that the rotation of the beam at the ends is prevented due to end restraint, these boundary 
conditions can be expressed as (0) = 0 and (L) = 0.  Substituting the first condition into 
Equation A6, it can be seen that B = 0.  Substituting the second condition into Equation A6 
provides the following solution:

0sin kLA (A7) 

To provide a nontrivial solution, A, can not equal zero.  Therefore:

sin kL = 0 
kL =                   (A8)

Substituting the value of k into Equation A8 and solving for the critical moment, Mocr, yields:

GJEI
L

M yocr (A9)

A.1.2 INFINITE SERIES APPROXIMATION
If a beam has a constant cross-section but the induced moment, M, varies along the unbraced 
length, L, a closed-form solution does not exist and it must be solved by other means.  One 
technique is to use an infinite series approximation.  For example, consider a cantilevered beam 
with a concentrated load at the end of the beam.  The induced bending moment, M, can be 
denoted as M = P(L-z) where z is measured from the supported end.  By defining a new value x2

= (L-z)2 and a constant k2 = P2/EIyGJ, Equation A4 can be rewritten as:

022
2

2

xk
dx
d

(A10)

To solve the second-order differential equation in Equation A10, assume that the shape of the 
curve for  is a series of the form:

......3
3

2
21

n
no xaxaxaxaa (A11)

Differentiating Equation A11 twice, yields the following:

...x1)a-n(n...201262 2-n
n

3
5

2
4322

2

xaxaxaa
dx
d

(A12)
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Substituting Equations A11 and A12 into Equation A10 yields: 

 0]xk...axkaxk[a]x1)a-...n(nx6a[2a 2n2
n

32
1

22
0

2-n
n32 (A13)

Combining like terms yields the following equation: 

0x1)a-n(nka...xa02x12ax6a2a 2-n
n

2
4-n

3
5

2
1

2
4

2
32 kakao (A14) 

It can be seen by inspection that Equation A14 can only be true if each term in the equation 
equals zero.  Therefore, a2=0, a3=0, and for n 4, an- 4k2 + n(n-1)an=0.  Solving for an:

)1(

2
4

nn
kaa n

n (A15)

Substituting different values of n into Equation A15 yields the following set of equations to solve 
for each coefficient: 

n=4 a4 = -a0k2 /(3·4) 
n=5 a5 = -a1k2 /(4·5) 
n=6 a6 = -a2k2 /(5·6) = 0 
n=7 a7 = -a3k2 /(6·7) = 0 

n=8 a8 = -a4k2 /(7·8) = a0k4 /(3·4·7·8) 
n=9 a9 = -a5k2 /(8·9) = a1k4 /(4·5·8·9) 
n=10 a10 = -a6k2 /(9·10) = 0 
n=11 a11 = -a7k2 /(10·11) = 0

In general, 
 for n=4, 8, 12, 16, 20, 24 ...  an = a0(-k2)n/4 / [3·4·7·8· ...· (n-1) ·n]
 for n=5, 9, 13, 17, 21, 25 ...  an = a1(-k2)(n-1)/4 / [4·5·8·9·...· (n-1) ·n]
 for n=6, 10, 14, 18, 22, 26 ...  an = 0 
 for n=7, 11, 15, 19, 23, 27 ...  an = 0 

Substituting these coefficients into Equations A11 and A12 and simplifying yields the following 
equations: 

...
13129854985454

...
12118743874343

1
1369452

1

1268442 xkxkxkxaxkxkxkao (A16)

...
1298548544

1...
1187437433

1268442

1

1167432 xkxkxkaxkxkxka
dx
d

o (A17)

Given that there is no rotation of the beam at the fixed end and no change in rotation at the free 
end, the boundary conditions for this loading case can be expressed as follows: 

z = 0:  x = L:  0L

z = L:  x = 0:  00
dx
d
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Substituting the second condition into Equation A17, it can be seen that constant a1=0.
Substituting the first condition into equation A16, reduces it to the following: 

0...
12118743874343

1
1268442 LkLkLkao (A18)

To provide a nontrivial solution ao can’t equal zero.  Therefore, the minimum value of kL2 where 
= 0 occurs at kL2 = 4.013.  Substituting the value of k and solving for the critical value of P

yields:

GJEI
L

P ycr 2

013.4
(A19)

Finally, by setting Equation A19 equal to the maximum moment equation for this loading 
condition (Mmax=PL) and simplifying yields:  

GJEI
L

M ycr
013.4

(A20)

A.1.3 STRAIN ENERGY APPROXIMATION METHOD
Another technique used to approximate the critical buckling load of beams is the strain energy 
approximation method.  When a beam buckles, the strain energy due to lateral deflection and 
twist is increased.  The load which is applied to the beam is lowered, thereby decreasing the 
potential energy.  The decrease in potential energy can then be set equal to the increase in strain 
energy.  For example, take a simply-supported single span beam with a concentrated load at 
midspan.  The increase in strain energy due to lateral deflection and twist can be denoted as 
follows: 

dz
dz
dGJdz

dz
udEIU

LL

y

2

2
0

2

2
0 2

2

(A21)

The decrease in potential energy can be denoted as follows: 

dzzL
dz

udPV
L

22

2
2

0
(A22)

Equating the increase in strain energy given in Equation A21 to the decrease in potential energy 
given in Equation A22 yields the following: 

dz
dz
dGJdz

dz
udEIdzzL

dz
udP

LL

y

L 2

2
0

2

2
0 2

2
2

0 2

2

2
(A23)

Using Equation A2, the following relationship can be defined for this loading condition: 
Substituting this value into Equation A23 and combining like terms yields:



AMERICAN FOREST & PAPER ASSOCIATION 

        TECHNICAL REPORT NO. 14                             25 

zL
EI
P

dz
ud

y 222

2

(A24)

Substituting this value into Equation A23 and combining like terms yields: 

dz
dz
dGJdzzL

EI
P LL

y

2
0

2
2

0

2
2

2

24
(A25)

To estimate the critical value of P, a good approximation of the rotated shape along the length is 
needed.  For a simply-supported single span beam, the shape can be approximated using a 
trigonometric series: 

...5cos3coscos 531 L
za

L
za

L
za (A26)

Substituting the first term of this approximation into Equation A25: 

dz
L
z

L
aGJdzzL

L
za

EI
P LL

y

2
0

2
12

0

22

1

2

sin
2

cos
4

(A27)

Integrating both sides of the equation results in: 

L
aGJLa

EI
P

y 46.2944

2
1

232
1

22

(A28)

Solving for the critical value of P yields: 

GJEI
L

P ycr 2

16.17
(A29)

Finally, by setting Equation A29 equal to the maximum moment equation for this loading 
condition (Mmax=PL/4) and simplifying yields: 

GJEI
L

M ycr
29.4

(A30)

Note: The actual constant in Equation A29 is 16.93 rather than 17.16; about a 1.5% error.  This difference can be 
reduced to less than 0.1% by adding a second term to the approximation of  in Equation A27.
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A.1.3 EQUIVALENT MOMENT FACTOR
The strain energy approximation method provides a tool for approximating the critical moment 
equation for many loading conditions.  Using the previous example and the maximum moment 
equation for the previous loading condition (Mmax=PL/4), Equation A25 can be rewritten as: 

2
0

2
2

0

2
2

2 21
LL

y

dz
dz
dGJdz

L
z

EI
M

(A31)

Developing a similar equation for the reference condition of a beam braced at both ends with a 
constant moment, Equation A25 can be rewritten as: 

2
0

2
2

0

2
2 LL

y

o dz
dz
dGJdz

EI
M

(A32)

At this point an important assumption must be clearly understood.  The rotated shape, , is 
assumed to be approximately the same for all beams braced at both ends.  Therefore, the second 
term in both Equations A31 and A32 are equal.  Setting these equations equal and substituting 
the single term approximation for  (see Equation A26) yields: 

2
0

2

1

2
2

0

22

1

2

cos21cos
L

y

o
L

y

dz
L
za

EI
Mdz

L
z

L
za

EI
M

(A33)

Integrating both sides yields the following results: 

)2500.0()1340.0( 1

2
0

1

2

La
EI
MLa

EI
M

yy

(A34)

Solving for the ratio, Cb, of the critical moment for the concentrated load case to the critical 
moment for the reference case yields: 

366.1
1340.0
2500.0

ocr

cr
b M

MC (A35)

Note: The actual moment ratio for these two loading conditions is 1.347 rather than 1.366; about a 1.5% error.  
This difference is due to the error associated with the assumed shape of .

Equation A33 can be solved using any assumed shape of . The accuracy of the assumed shape 
determines the error of the approximation.  One commonly used shape of  is: 

2
2

1

42
zLa

(A36)

Substituting this value for  into Equation A33 yields: 
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Integrating both sides yields the following results: 
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(A38)

Solving for the ratio, Cb, of the critical moment for the concentrated load case to the critical 
moment for the reference case yields: 

390.1
1740
3360

o
b M

MC (A39)

Note: For this load case, the moment ratio error is more than 3% as a result of the assumed shape of .

It can be seen in the previous sections that the moment ratio, Cb, is a function of the area under 
the M product curve.  The familiar four-moment empirical equation was developed using this 
relationship.  Formulation of the four-moment equation can be demonstrated using the previous 
load case of a concentrated load at midspan and the Equation A36 approximation of .  The 
rotated shape, i, and the moment, Mi, at each quarterpoint location for a concentrated load at 
midspan are: 

64
3 2

1La
A 8
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M A        (A40)
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3 2
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C 8

PLM C 50.0
maxM

M C         (A42) 

The values of i for the uniform moment load case are the same as those given in Equations A40-
A42; however, the moment is constant (MA =MB = MC = Mo).  A constant, C, is used to calibrate 
the equation which relates the M products for the two load cases as follows: 

C
M

M
M

M
M

M
C

C
M

M
M

M
M

M
C

M
MC

CBACCBBAA

CBA

o
b

maxmaxmaxmaxmaxmax

343
10

(A43)

The constant, C, used to calibrate Equation A43 varies with the loading condition.  For the case 
of a concentrated load at midspan, the theoretical value of Cb=1.347 results in a constant C=1.65.
For the load case of equal and opposite end moments (double curvature), Cb=2.30 resulting in a 
constant C=2.4.  Conservatively, the value of C for use with the empirical method for 
determining the equivalent moment factor has been set at 2.5 resulting in the familiar equation: 
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max

max

5.2343
5.12

MMMM
MC

CBA
b (A44)

This empirical procedure does not apply to beams braced at only one end, such as cantilevers. 

A.2 LOAD ECCENTRICITY FACTOR
Equations derived in A.1 assume that loading is through the neutral axis of the member.  In cases 
where the load is applied above the neutral axis at an unbraced location, an additional moment is 
induced due to the added displacement of the load at the top of the beam.  The effect of this 
additional moment on the critical buckling moment can be estimated using the strain energy 
approximation method addressed in the previous section. 

Using the example from the previous section, a concentrated load is applied at midspan of a 
simply-supported single span beam.  The additional moment due to the load being applied at the 
top of the beam lowers the load point thereby decreasing the potential energy.  The vertical 
distance, b, that the load is lowered can be denoted as follows: 

4
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2
o

o
hhb (A45)

The decrease in potential energy can be denoted as: 

4

2
oPhV (A46)

The location of the load is at midspan where z = 0.  Using the previous definition of , Equation 
A46 can be simplified to: 
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Adding the decrease in potential energy from the load applied at the top of the beam to Equation 
A27 yields: 
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Integrating both sides of the equation results in: 

L
a

GJLa
EI
PPha

y 46.29444

2232
1

222
1 1 (A49)

Equation A49 can be solved for the value P; however, it can be seen that Equation A28 and 
Equation A49 have similar terms and it can be seen that, after some mathematical manipulation, 
they can be equated as follows: 
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Simplifying and solving for the critical load applied at the top of the beam, Ptp, results in: 
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Dividing Equation A51 through by Pna yields: 
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Terms in Equation A52 can be rearranged to: 
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where:

GJ
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22 (A54)

Substituting the equation for Pna from Equation A29 into Equation A54 results in: 
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Using the more accurate constant of 16.93 rather than 17.16 results in: 
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2
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(A56)

Flint [10] demonstrated, numerically, that Equation A53 is accurate for cases where  lies 
between -0.34 and +1.72 (negative values indicate loads applied below the neutral axis and 
positive values indicate loads applied above the neutral axis).  Limiting  to a maximum value of 
1.72 would limit Ce to a minimum value of 0.27. For other loading conditions of a beam between 
supports, a similar procedure can be used to determine .  In general, Equation A56 can be 
rewritten as follows: 
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To demonstrate the application of Equation A57, assume seven equally spaced loads along a 
beam braced at both ends.  Using Equation A47, the effect of the multiple loads can be denoted 
as:

4
4375.0cos2250.0cos2125.0cos200.0cos

4

2
12222

2
1 PhaPhaV (A58)

For loading through the neutral axis, the equation for calculating Pcr for this loading condition is: 

GJEI
L

P ycr 2
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(A59)

Substituting the value for V and Pcr into Equation A57, the value of  for this loading condition 
can be estimated as: 
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Appendix B 
Derivation of 1997 NDS Beam Stability Provisions

Outlined in this Appendix is the process by which the “effective length” provisions contained in 
the 2001 and earlier versions of the NDS were developed by Hooley and Madsen [7].  Using 
Equation 1 adjusted for the loading condition of a concentrated load on a simply-supported 
beam:  

GJEI
L

CM y

u

e
cr

23.4
(B1)

For rectangular cross-sections, Hooley and Madsen assumed G = E/16 : J = 4Iy(1-0.63b/d) :
 = 1-(b/d)2 (see Appendix C.1 for explanation) and expanded Equation B1 to the following: 

2)/(1
/63.0112.2

db
db

L
EIC

M
u

ye
cr (B2)

Recognizing that the term under the radical reaches a minimum value of 0.9425 when b/d =
0.355 (see Appendix C.1), Equation B2 was reduced to: 

u

ey
cr L

CEI
M

0.2
(B3)

Several approximation methods for determining the effect of load being applied at the top of the 
beam were reviewed.  Hooley and Madsen used a study by Flint and, using Timoshenko’s first 
order energy approximation (corrected in a rederivation by Flint), derived simple “effective 
length” adjustments for the above mentioned load case. 

1eC   for  72.134.0        (B4)

where:

GJ
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L
d y

u2
733.1

(B5)

Note: The estimated value of Ce in Equation B4 is only accurate in a limited range.  Flint proposed a more accurate 
estimate of Ce using a quadratic solution (see Appendix A.2) which was not used by Hooley and Madsen.  The more 
accurate quadratic solution is utilized in the procedures proposed in 1.2.3.1 and 2.1.3.4.

Hooley and Madsen used several approximations to simplify Timoshenko’s first order 
approximation of Ce.  The steps are covered in the following equations: 
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Hooley and Madsen combined Equations B3 and B8 to produce the final equation: 

dL
EI

M
u

y
cr 319.1

4.2
(B9)

The equation was further simplified to a general form for other loading conditions using a term 
for effective length, Le:

e

y
cr L

EI
M

4.2
(B10)

For a concentrated load at midspan: 

dLL ue 319.1 (B11)

For design, Hooley and Madsen recommended that the unbraced length, Lu, be increased 15% to 
account for imperfect torsional restraint at the supports: 

dLL ue 337.1 (B12)

In 1977, Equations B10 and B12 were incorporated into the NDS.  Additional effective length 
equations were also developed for common loading conditions.  In 1986, the use of Equation 
B12 was limited to 1.80Lu which occurs where Lu/d  7: 

dLLL ueu 337.18.1 (B13)

For use in the NDS, Equation B10 was converted to a critical buckling design stress by dividing 
the equation by the strong-axis section modulus, Sx, and multiplying by a series of adjustment 
factors to adjust the tabulated average E values to allowable 5th percentile shear-free E values.  
The final equation took the form of: 
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 where: 
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Appendix C 
Derivation of Rectangular Beam Equations

Outlined in this Appendix are assumptions made and procedures used to develop the simplified 
beam stability equations for rectangular members. 

C.1 CRITICAL BUCKLING MOMENT
The general equation for the critical buckling moment, Mcr, is as follows: 

JGIECCM yyy

u

eb
cr

0505

15.1
(C1)

For wood members, the E/G ratio ranges from 2 to 32.  In practice, a value of 16 has typically 
been used. 

For rectangular cross-sections, the torsional shear constant, J, and the cross-section slenderness 
factor, , can be estimated as: 
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Substituting these values into Equation C1, yields the following solution: 
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The term under the radical in Equation C4 reaches a minimum value of 0.943 when b/d = 0.355.  
This can be seen in the following graph: 

0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500

0.000 0.200 0.400 0.600 0.800 1.000

b/d

R
at

io
 



AMERICAN WOOD COUNCIL 

      36             DESIGNING FOR LATERAL-TORSIONAL STABILITY IN WOOD MEMBERS

Substituting this minimum value into Equation C4 yields: 
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(C5)

C.2 LOAD ECCENTRICITY FACTOR FOR TOP-LOADED BEAMS
The general equation for the load eccentricity factor for top-loaded beams, Ce, is as follows: 
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where:
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Using the relationships assumed in the previous section for rectangular wood members, the 
term can be simplified as follows: 
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The term under the radical in Equation C8 increases as the b/d ratio of the member increases and, 
therefore, reduces the critical load.  This can be see in the following graph: 

A maximum b/d ratio was chosen as 0.4286 representing the dimensions of a 2x4.  For larger b/d
ratios, this estimate is unconservative.  However, the critical buckling moment for these cases is 
increasing at a rate that makes this adjustment insignificant.  At b/d=0.4286, Equation C8 
reduces to: 
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Appendix D 
Graphical Representation of Wood Beam Stability Provisions 

(for beams loaded through the neutral axis)

Equivalent Moment Factor, CbLoading Condition

Supported at Loading Point Unsupported at Loading Point 

Single Span Beams 
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^                                                ^ 

1.13
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