By downloading this file to your computer, you are accepting and agreeing to the terms of AWC's end-user license agreement (EULA), which may be viewed here: <u>End User License Agreement</u>. Copyright infringement is a violation of federal law subject to criminal and civil penalties.

R

NATIONAL DESIGN SPECIFICATION® for Wood Construction with Commentary

Updates and Errata

While every precaution has been taken to ensure the accuracy of this document, errors may have occurred during development. Updates or Errata are posted to the American Wood Council website at www.awc.org. Technical inquiries may be addressed to info@awc.org.

On behalf of the industry it represents, AWC is committed to ensuring a resilient, safe, and sustainable built environment. To achieve these objectives, AWC contributes to the development of sound public policies, codes, and regulations which allow for the appropriate and responsible manufacture and use of wood products. We support the utilization of wood products by developing and disseminating consensus standards, comprehensive technical guidelines, and tools for wood design and construction, as well as providing education regarding their application.

R D S

NATIONAL DESIGN SPECIFICATION® for Wood Construction

National Design Specification (NDS) for Wood Construction with Commentary 2018 Edition

First Electronic Version: October 2017 Second Electronic Version: May 2018 Third Electronic Version: April 2019 Fourth Electronic Version: October 2021

First Print Version: June 2018 Second Print Version: December 2021

ISBN 978-1-940383-47-7

Copyright © 2017 by American Wood Council

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including, without limitation, electronic, optical, or mechanical means (by way of example and not limitation, photocopying, or recording by or in an information storage retrieval system) without express written permission of the American Wood Council. For information on permission to copy material, please contact:

Copyright Permission American Wood Council 222 Catoctin Circle, SE, Suite 201 Leesburg, VA 20175 info@awc.org

FOREWORD

The National Design Specification[®] for Wood Construction (NDS[®]) was first issued by the National Lumber Manufacturers Association (now the American Wood Council) (AWC) in 1944, under the title National Design Specification for Stress-Grade Lumber and Its Fastenings. By 1971, the scope of the Specification had broadened to include additional wood products. In 1977, the title was changed to reflect the new nature of the Specification, and the content was rearranged to simplify its use. The 1991 edition was reorganized in an easier to use "equation format", and many sections were rewritten to provide greater clarity.

In 1992, the American Forest & Paper Association (AF&PA) – formerly the National Forest Products Association – was accredited as a canvass sponsor by the American National Standards Institute (ANSI). The Specification subsequently gained approval as an American National Standard designated ANSI/NF_oPA NDS-1991 with an approval date of October 16, 1992.

In 2010, AWC was separately incorporated, rechartered, and accredited by ANSI as a standards developing organization. The current edition of the Standard is designated ANSI/AWC NDS-2018 with an approval date of November 16, 2017.

In developing the provisions of this Specification, the most reliable data available from laboratory tests and experience with structures in service have been carefully analyzed and evaluated for the purpose of providing, in convenient form, a national standard of practice.

It is intended that this Specification be used in conjunction with competent engineering design, accurate fabrication, and adequate supervision of construction. Particular attention is directed to Section 2.1.2, relating to the designer's responsibility to make adjustments for particular end uses of structures.

Since the first edition of the *NDS* in 1944, the Association's Technical Advisory Committee has continued to study and evaluate new data and developments in wood design. Subsequent editions of the Specification have included appropriate revisions to provide for use of such new information. This edition incorporates numerous changes considered by AWC's ANSI-accredited Wood Design Standards Committee. The contributions of members of this Committee to improvement of the Specification as a national design standard for wood construction are especially recognized.

Acknowledgement is also made to the Forest Products Laboratory, U.S. Department of Agriculture, for data and publications generously made available, and to the engineers, scientists, and other users who have suggested changes in the content of the Specification. AWC invites and welcomes comments, inquiries, suggestions, and new data relative to the provisions of this document.

It is intended that this document be used in conjunction with competent engineering design, accurate fabrication, and adequate supervision of construction. AWC does not assume any responsibility for errors or omissions in the document, nor for engineering designs, plans, or construction prepared from it.

Those using this standard assume all liability arising from its use. The design of engineered structures is within the scope of expertise of licensed engineers, architects, or other licensed professionals for applications to a particular structure.

American Wood Council

v

TABLE OF CONTENTS FOR THE NDS

Part/T	tle	Page
1	General Requirements for Structural Design	1
	1.1 Scope	2
	1.2 General Requirements	2
	1.3 Standard as a Whole	2
	1.4 Design Procedures	2
	1.5 Specifications and Plans	3
	1.6 Notation	3
2	Design Values for Structural	_
	Members	9
	2.1 General	10
	2.2 Reference Design Values	10
	2.3 Adjustment of Reference Design Values	10
3	Design Provisions and Equations 3.1 General	
		14 15
	3.2 Bending Members – General	15
	3.3 Bending Members – Flexure3.4 Bending Members – Shear	13
	3.5 Bending Members – Deflection	17
	3.6 Compression Members – General	20
	3.7 Solid Columns	20
	3.8 Tension Members	22
	3.9 Combined Bending and Axial Loading	22
	3.10 Design for Bearing	23
4	Sawn Lumber	25
	4.1 General	26
	4.2 Reference Design Values	27
	4.3 Adjustment of Reference Design Values	28
	4.4 Special Design Considerations	31
5	Structural Glued Laminated	
	Timber	
	5.1 General	34
	5.2 Reference Design Values	35
	5.3 Adjustment of Reference Design Values	36
	5.4 Special Design Considerations	39
6	Round Timber Poles and Piles	43
	6.1 General	44
	6.2 Reference Design Values	44
	6.3 Adjustment of Reference Design Values	44
7	Prefabricated Wood I-Joists	47
	7.1 General	48
	7.2 Reference Design Values	48
	7.3 Adjustment of Reference Design Values	48
	7.4 Special Design Considerations	50

Part/Ti	itle	Page
8	Structural Composite Lumber	
	8.1 General	52
	8.2 Reference Design Values	52
	8.3 Adjustment of Reference Design Values	52
	8.4 Special Design Considerations	54
9	Wood Structural Panels	. 55
	9.1 General	56
	9.2 Reference Design Values	56
	9.3 Adjustment of Reference Design Values	57
	9.4 Design Considerations	58
10	Cross-Laminated Timber	. 59
	10.1 General	60
	10.2 Reference Design Values	60
	10.3 Adjustment of Reference Design	
	Values	60
	10.4 Special Design Considerations	62
11	Mechanical Connections	. 63
	11.1 General	64
	11.2 Reference Design Values	65
	11.3 Adjustment of Reference Design Values	s 65
12	Dowel-Type Fasteners	. 73
	12.1 General	74
	12.2 Reference Withdrawal and Pull-Throug	
	Design Values	76
	12.3 Reference Lateral Design Values	83
	12.4 Combined Lateral and Withdrawal Loads	89
	12.5 Adjustment of Reference Design Values	
	12.6 Multiple Fasteners	93
	*)5
13	Split Ring and Shear Plate	
	Connectors 13.1 General	119 120
	13.1 General 13.2 Reference Design Values	120
	13.3 Placement of Split Ring and Shear	121
	Plate Connectors	127
14		133
	14.1 General	134
	14.2 Reference Design Values	134
	14.3 Placement of Timber Rivets	136

Pag

145

146

146 148

151

153

154

Page

Part/Title

AMERICAN WOOD COUNCIL

Part/Ti	tle	
15	Specia	al Loading Conditions
	15.1	Lateral Distribution of a
		Concentrated Load
	15.2	Spaced Columns
	15.3	Built-Up Columns
	15.4	Wood Columns with Side Load
		Eccentricity
16	Fire D	esign of Wood Members
	16.1	General
	16.2	Design Procedures for Exposed

Wood M	embers	154
16.3 Wood Co	onnections	156
Appendix		157
Appendix A (N	on-mandatory) Const	truction
and Desi	gn Practices	158
Appendix B (N	on-mandatory) Load	Duration
(ASD Or	nly)	160
Appendix C (N	on-mandatory) Temp	berature
Effects		162
Appendix D (N	on-mandatory) Later	al
Stability	of Beams	163
Appendix E (N	on-mandatory) Local	Stresses
in Fasten	er Groups	164

Part/Title		Page		
	Appendix F (Non-mandatory) Design for			
	Creep and Critical Deflection			
	Applications	169		
	Appendix G (Non-mandatory) Effective			
	Column Length	171		
	Appendix H (Non-mandatory) Lateral			
	Stability of Columns	172		
	Appendix I (Non-mandatory) Yield Limit			
	Equations for Connections	173		
	Appendix J (Non-mandatory) Solution of			
	Hankinson Formula	176		
	Appendix K (Non-mandatory) Typical			
	Dimensions for Split Ring and Shear			
	Plate Connectors	179		
	Appendix L (Non-mandatory) Typical			
	Dimensions for Dowel-Type Fastene	rs		
	and Washers	180		
	Appendix M (Non-mandatory) Manufacturing			
	Tolerances for Rivets and Steel Side			
	Plates for Timber Rivet Connections			
	Appendix N (Mandatory) Load and Resista	nce		
	Factor Design (LRFD)	186		
F	leferences	189		

Foreword to the NDS Commentary 193

TABLE OF CONTENTS FOR THE NDS COMMENTARY

with Side Loads and

Part/Title

C1	Gener	al Requirements for	
	Struct	ural Design	194
	C1.1	Scope	194
	C1.2	General Requirements	194
	C1.3	Standard as a Whole	195
	C1.4	Design Procedures	195
	C1.5	Specifications and Plans	196
	C1.6	Notation	196
C2	Desig	n Values for Structural	
	Memb	ers	197
	C2.1	General	197
	C2.2	Reference Design Values	197
	C2.3	Adjustment of Reference Design	
		Values	197

C3	Desig	n Provisions and Equations	201
	C3.1	General	201
	C3.2	Bending Members - General	202
	C3.3	Bending Members - Flexure	202
	C3.4	Bending Members - Shear	203
	C3.5	Bending Members - Deflection	204
	C3.6	Compression Members - General	205
	C3.7	Solid Columns	206
	C3.8	Tension Members	208
	C3.9	Combined Bending and Axial	
		Loading	208
	C3.10) Design for Bearing	210
C4	Sawn	Lumber	211
	C4.1	General	211
	C4.2	Reference Design Values	213
	C4.3	Adjustment of Reference Design	
		Values	215
	C 1 1		017

C4.4 Special Design Considerations 217

Page

C5	Struct	ural Glued Laminated	
	Timbe	r	220
	C5.1	General	220
	C5.2	Reference Design Values	222
	C5.3	0	
		Values	224
	C5.4	Special Design Considerations	226
C6	Round	I Timber Poles and Piles	228
•••		General	228
		Reference Design Values	220
	C6.3	0	
	0.5	Values	230
		values	250
C7	Prefal	bricated Wood I-Joists	232
	C7.1	General	232
	C7.2	Reference Design Values	232
	C7.3	Adjustment of Reference Design	
		Values	233
	C7.4	Special Design Considerations	234
C 8	Struct	ural Composite Lumber	236
00		General	236
		Reference Design Values	230
	C8.2	6	230
	C0.5	Values	237
	C8.4	Special Design Considerations	237
	C0.4	Special Design Considerations	230
C9		Structural Panels	
		General	239
		Reference Design Values	240
	C9.3	5 6	
		Values	242
	C9.4	Design Considerations	243
C10	Cross	Laminated Timber	245
	C10.1	General	245
	C10.2	Reference Design Values	245
	C10.3	Adjustment of Reference Design	
		Values	246
	C10.4	Special Design Considerations	247
C11	Mecha	anical Connections	249
		General	249
		2 Reference Design Values	250
		Adjustment of Reference Design	
		Values	251

C12	Dowel-Type Fasteners	253
	C12.1 General	253
	C12.2 Reference Withdrawal Design Values	255
	C12.3 Reference Lateral Design Values	259
	C12.4 Combined Lateral and Withdrawal	
	Loads	262
	C12.5 Adjustment of Reference Design	
	Values	263
	C12.6 Multiple Fasteners	266
C13	Split Ring and Shear Plate	
	Connectors	267
	C13.1 General	267
	C13.2 Reference Design Values	268
	C13.3 Placement of Split Ring and Shear	
	Plate Connectors	269
C14	Timber Rivets	272
	C14.1 General	272
	C14.2 Reference Design Values	273
	C14.3 Placement of Timber Rivets	275
C15	Special Loading Conditions	276
	C15.1 Lateral Distribution of a Concentrated	1
	Load	276
	C15.2 Spaced Columns	277
	C15.3 Built-Up Columns	279
	C15.4 Wood Columns with Side Loads and	
	Eccentricity	280
C16	Fire Design of Wood Members	
	C16.1 General	282
	C16.2 Design Procedures for Exposed	
	Wood Members	283
	C16.3 Wood Connections	285
	References	287

LIST OF TABLES FOR THE NDS

Contents

2.3.2	Frequently Used Load Duration Factors, C _D 11
2.3.3	Temperature Factor, Ct 11
2.3.5	Format Conversion Factor, K _F (LRFD Only)12
2.3.6	Resistance Factor, ϕ (LRFD Only)12
3.3.3	Effective Length, ℓ_e , for Bending Members16
3.10.4	Bearing Area Factors, C _b
4.3.1	Applicability of Adjustment Factors for Sawn Lumber
4.3.8	Incising Factors, C _i
5.1.3	Net Finished Widths of Structural Glued Laminated Timbers
5.2.8	Radial Tension Design Factors, F _{rt} , for Curved Members
5.3.1	Applicability of Adjustment Factors for Structural Glued Laminated Timber
6.3.1	Applicability of Adjustment Factors for Round Timber Poles and Piles45
6.3.5	Condition Treatment Factor, C_t
6.3.11	Load Sharing Factor, $C_{\mbox{\tiny Is}},$ per ASTM D 2899 . 46
7.3.1	Applicability of Adjustment Factors for Prefabricated Wood I-Joists
8.3.1	Applicability of Adjustment Factors for Structural Composite Lumber
9.3.1	Applicability of Adjustment Factors for Wood Structural Panels
9.3.4	Panel Size Factor, C _s
10.3.1	Applicability of Adjustment Factors for Cross-Laminated Timber61
10.4.1.1	Shear Deformation Adjustment Factors, K _s
11.3.1	Applicability of Adjustment Factors for Connections
11.3.3	Wet Service Factors, C _M , for Connections 67
11.3.4	Temperature Factors, C_t , for Connections 67
11.3.6A	Group Action Factors, C _g , for Bolt or Lag Screw Connections with Wood Side Members

11.3.6B	Group Action Factors, C _g , for 4" Split Ring or Shear Plate Connectors with Wood Side Members
11.3.6C	Group Action Factors, C_g , for Bolt or Lag Screw Connections with Steel Side Plates . 71
11.3.6D	Group Action Factors, C _g , for 4" Shear Plate Connectors with Steel Side Plates72
12.2A	Lag Screw Reference Withdrawal Design Values
12.2B	Wood Screw Reference Withdrawal Design Values
12.2C	Nail and Spike Reference Withdrawal Design Values
12.2D	Post-Frame Ring Shank Nail Reference Withdrawal Design Values, W 80
12.2E	Roof Sheathing Ring Shank Nail and Post-Frame Ring Shank Nail Reference Withdrawal Design Values, W
12.2F	Head Pull Through, W _H
12.3.1A	Yield Limit Equations
12.3.1B	Reduction Term, R _d
12.3.3	Dowel Bearing Strengths, F _e , for Dowel-Type Fasteners in Wood Members . 86
12.3.3A	Assigned Specific Gravities
12.3.3B	Dowel Bearing Strengths for Wood Structural Panels
12.5.1A	End Distance Requirements
12.5.1B	Spacing Requirements for Fasteners in a Row
12.5.1C	Edge Distance Requirements
12.5.1D	Spacing Requirements Between Rows91
12.5.1E	Edge and End Distance and Spacing Requirements for Lag Screws Loaded in Withdrawal and Not Loaded Laterally91
12.5.1F	Perpendicular to Grain Distance Requirements for Outermost Fasteners in Structural Glued Laminated Timber Members
12.5.1G	End Distance, Edge Distance, and Fastener Spacing Requirements in Narrow Edge of Cross-Laminated Timber

12A	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with both members of identical specific gravity
12B	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL main member with 1/4" ASTM A 36 steel side plate
12C	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for structural glued laminated timber main member with sawn lumber side member of identical specific gravity
12D	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for structural glued laminated timber main member with 1/4" ASTM A 36 steel side plate
12E	BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL to concrete
12F	BOLTS: Reference Lateral Design Values, Z, for Double Shear (three member) Connections for sawn lumber or SCL with all members of identical specific gravity 100
12G	BOLTS: Reference Lateral Design Values, Z, for Double Shear (three member) Connections for sawn lumber or SCL main member with 1/4" ASTM A 36 steel side plates
12H	BOLTS: Reference Lateral Design Values, Z, for Double Shear (three member) Connections for structural glued laminated timber main member with sawn lumber side members of identical specific gravity103
121	BOLTS: Reference Lateral Design Values, Z, for Double Shear (three member) Connections for structural glued laminated timber main member with 1/4" ASTM A 36 steel side plates
12J	LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with both members of identical specific gravity

12K	LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for $t_s < 1/4$ ") or ASTM A 36 steel side plate (for $t_s = 1/4$ ")
12L	WOOD SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with both members of identical specific gravity
12M	WOOD SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate
12N	COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with both members of identical specific gravity
12P	COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate 112
12Q	COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values (Z) for Single Shear (two member) Connections for sawn lumber or SCL with wood structural panel side members with an effective G=0.50 114
12R	COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections with wood structural panel side members with an effective G=0.42115
128	POST FRAME RING SHANK NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with both members of identical specific gravity
12T	POST FRAME RING SHANK NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections for sawn lumber or SCL with ASTM A653, Grade 33 steel side plates

LIST OF TABLES

13A	Species Groups for Split Ring and Shear Plate Connectors
13.2A	Split Ring Connector Unit Reference Design Values
13.2B	Shear Plate Connector Unit Reference Design Values
13.2.3	Penetration Depth Factors, C _d , for Split Ring and Shear Plate Connectors Used with Lag Screws
13.2.4	Metal Side Plate Factors, C _{st} , for 4" Shear Plate Connectors Loaded Parallel to Grain
13.3.2.2	Factors for Determining Minimum Spacing Along Connector Axis for $C_{\Delta} = 1.0$
13.3.3.1-1	Factors for Determining Minimum Spacing Along Axis of Cut of Sloping Surfaces
13.3.3.1-2	Factors for Determining Minimum Loaded Edge Distance for Connectors in End Grain
13.3.3.1-3	Factors for Determining Minimum Unloaded Edge Distance Parallel to Axis of Cut
13.3.3.1-4	Factors for Determining Minimum End Distance Parallel to Axis of Cut 130
13.3	Geometry Factors, C_{Δ} , for Split Ring and Shear Plate Connectors
14.2.3	Metal Side Plate Factor, C _{st} , for Timber Rivet Connections
14.3.2	Minimum End and Edge Distances for Timber Rivet Joints
14.2.1A	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = 1-1/2" $s_p = 1$ " $s_q = 1$ ")137
14.2.1B	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = 1-1/2" $s_p = 1-1/2$ " $s_q = 1$ ")
14.2.1C	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = 2-1/2" $s_p = 1$ " $s_q = 1$ ")139
14.2.1D	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = 2-1/2" $s_p = 1-1/2$ " $s_q = 1$ ")

14.2.1E	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = $3-1/2$ " s _p = 1" s _q = 1") 141
14.2.1F	Reference Wood Capacity Design Values Parallel to Grain, P_w , for Timber Rivets (Rivet Length = $3-1/2$ " $s_p = 1-1/2$ " $s_q = 1$ ")
14.2.2A	Values of q _w (lbs) Perpendicular to Grain for Timber Rivets143
14.2.2B	Geometry Factor, C_{Δ} , for Timber Rivet Connections Loaded Perpendicular to Grain
15.1.1	Lateral Distribution Factors for Moment . 146
15.1.2	Lateral Distribution in Terms of Proportion of Total Load146
16.2.1A	Char Depth and Effective Char Depth (for $\beta_n = 1.5$ in./hr.)
16.2.1B	Effective Char Depths (for CLT with $\beta_n = 1.5$ in./hr.)
16.2.2	Adjustment Factors for Fire Design 156
F1	Coefficients of Variation in Modulus of Elasticity (COV _E) for Lumber and Structural Glued Laminated Timber
G1	Buckling Length Coefficients, Ke 171
I1	Fastener Bending Yield Strengths, Fyb 175
L1 to L7	Typical Dimensions for Dowel-Type Fasteners and Washers
	L1 Standard Hex Bolts
	L2 Standard Hex Lag Screws
	L3 Standard Wood Screws
	L4 Standard Common, Box, and Sinker Steel Wire Nails
	L5 Post-Frame Ring Shank Nails
	L5 Post-Frame Ring Shank Nails
N1	L5 Post-Frame Ring Shank Nails
N1 N2	 L5 Post-Frame Ring Shank Nails

х

LIST OF TABLES FOR THE NDS COMMENTARY

C7.3-1	Temperature Factor, C _t , for Prefabricated Wood I-Joists	233
C9.2.3	Relationship Between Span Rating and Nominal Thickness	241
C9.2.4	Panel Section Properties	242
C9.3.3	Wet Service Factor, C _M	242
C10.4.1.1	Shear Deformation Adjustment Factors .	248

LIST OF FIGURES FOR THE NDS

3A	Spacing of Staggered Fasteners	14
3B	Net Cross Section at a Split Ring or Shear Plate Connection	14
3C	Shear at Supports	17
3D	Bending Member End-Notched on Compression Face	18
3E	Effective Depth, d _e , of Members at Connections	19
3F	Simple Solid Column	20
3G	Combined Bending and Axial Tension	22
3Н	Combined Bending and Axial Compression	23
3I	Bearing at an Angle to Grain	24
4A	Notch Limitations for Sawn Lumber Beams	32
5A	Axis Orientations	35
5B	Depth, d _y , for Flat Use Factor	38
5C	Double-Tapered Curved Bending Member	40
5D	Tudor Arch	41
5E	Tapered Straight Bending Members	41
11A	Eccentric Connections	64
11B	Group Action for Staggered Fasteners	69
12A	Toe-Nail Connection	75
12B	Single Shear Bolted Connections	84
12C	Double Shear Bolted Connections	84
12D	Multiple Shear Bolted Connections	88
12E	Shear Area for Bolted Connections	88
12F	Combined Lateral and Withdrawal Loading	89
12G	Bolted Connection Geometry	90
12H	Spacing Between Outer Rows of Bolts	92

C12.1.5.7	Recommended Minimum Spacing for Wood Screws	254
C12.1.6.6	Recommended Minimum Spacing for Nails	255
C16.2-1	Cross-Sectional Properties for Four-Sided Exposure	286
C16.2-2	Allowable Design Stress to Average Ultimate Strength Adjustment Factors	286

12I	End Distance, Edge Distance and Fastener Spacing Requirements in Narrow Edge of	0.2
	Cross-Laminated Timber	
13A	Split Ring Connector	
13B	Pressed Steel Shear Plate Connector	120
13C	Malleable Iron Shear Plate Connector	120
13D	Axis of Cut for Symmetrical Sloping End Cut	125
13E	Axis of Cut for Asymmetrical Sloping End Cut	125
13F	Square End Cut	126
13G	Sloping End Cut with Load Parallel to Axis of Cut ($\phi = 0^{\circ}$)	124
13H	Sloping End Cut with Load Perpendicular to Axis of Cut ($\phi = 90^{\circ}$)	126
13I	Sloping End Cut with Load at an Angle ϕ to Axis of Cut	126
13J	Connection Geometry for Split Rings and Shear Plates	126
13K	End Distance for Members with Sloping End Cut	127
13L	Connector Axis and Load Angle	127
14A	End and Edge Distance Requirements for Timber Rivet Joints	136
15A	Spaced Column Joined by Split Ring or Shear Plate Connectors	147
15B	Mechanically Laminated Built-Up Columns	149
15C	Typical Nailing Schedules for Built-Up Columns	150
15D	Typical Bolting Schedules for Built-Up Columns	150

15E	Eccentrically Loaded Column	150
B1	Load Duration Factors, C _D , for Various Load Durations	159
E1	Staggered Rows of Bolts	163
E2	Single Row of Bolts	164
E3	Single Row of Split Ring Connectors	165
E4	A _{critical} for Split Ring Connection (based on distance from end of member)	

E5	A _{critical} for Split Ring Connection (based on distance between first and second split ring) 166
I1	(Non-mandatory) Connection Yield Modes 172
J1	Solution of Hankinson Formula176
J2	Connection Loaded at an Angle to Grain 176

LIST OF FIGURES FOR THE NDS COMMENTARY

C5.4.5	Taper Cut Combined with aSquare-Cornered Notch227	
C7.3.5	Example of Direct Attachment of Sheathing to Support Compression Flange and Lateral Support at Points of Bearing	
C9.2.1	Structural Panel with Strength Direction Across Supports241	
C9.4.1	Example of Structural Panel in Bending243	
C9.4.3	Structural Panel with Axial Compression Load in Plane of the Panel243	

C9.4.4	Shear-in-the-Plane for Wood Structural Panels	.244
C9.4.5	Through-the-Thickness Shear for Wood Structural Panels	.244
C12.2.5	Net Side Member Thickness t_{ns}	.259
C12.5.1.3	Connection Illustrating Use of Multiple Splice Plates	.265
C12.5.4-1	Effective Penetration and Side Member Thickness for Toe-Nails Subject to Lateral Loads	266
C16.2.4A	Typical Unbalanced Beam Layup	
	Typical Balanced Beam Layup	
C16.3	Char Contraction	.286