
Presented by: William L. Coulbourne, PE

Copyright © 2013 American Wood Council

Copyright Materials

- This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

- © American Wood Council 2013
Learning Objectives

At the end of this program, participants will be knowledgeable of:

1. Be able to describe how loads are distributed to buildings both vertically and horizontally
2. Be able to describe several different load paths that are critical to improved building performance during high winds
3. Be able to recognize problems in building framing that might present construction challenges to framing continuous load paths
4. Be able to recognize construction defects that could potentially fail under high wind loads

WFCM

❖ Basis for this webinar series is the 2012 Wood Frame Construction Manual (WFCM)
❖ Basis follows WFCM Prescriptive Provisions (Chapter 3).
❖ Prescriptive provisions are provided for:
 ▪ Connections
 ▪ Floor systems
 ▪ Wall systems
 ▪ Roof systems
❖ Provisions provide construction details and load tables
❖ WFCM also has engineering design in Chapter 2
Agenda – Webinar 2

- **Vertical load paths**
 - Roofs
 - Floors
 - Walls
 - Foundations

- **Lateral load paths**
 - Shearwalls
 - Hold downs

Wind Loads and Load Paths

NOTE
Continuous Load Path. The interconnection of all framing elements is critical to a wind-resistant building. A continuous load path of interconnected framing elements from roof diaphragms to floor diaphragms, and from floor diaphragms to walls, shall be provided.
Load Path Example

- Load path must be continuous
- Continuity is created by connections
- Load path always ends in supporting soil
- A building has hundreds of load paths

Source: FEMA

Design vs Construction Sequences

- Construction sequence
 - Build from bottom up
- Design premise
 - Design from the top down
- Load path discussion
 - Follows the design premise even though that is not what is observed in the field
Connections (WFCM 3.2)

- Lateral and shear forces
- Uplift
- Overturning
- Load path connections are needed for:
 - Roof to wall
 - Wall to floor
 - Wall to wall
 - Floor to sill
 - Sill to foundation

Roof Systems (WFCM 3.5)

- Roof framing
 - Open ceiling plans that eliminate collar ties or ceiling joists must have ridge beam
- Roof sheathing
 - Sheathing support must be fully supported by roof framing members
 - Sheathing edges must be supported by blocking or edge clips
- Roof diaphragm bracing
 - For wind speeds > 130 mph, must block and nail @ panel edges perpendicular to roof framing in first two bays
Roof Sheathing to Framing Connection

Nailed connection of roof sheathing to roof framing

Design considerations

- Must have adequate strength to resist:
 - Withdrawal of nail shank from roof framing
 - “Head pull-through” (when sheathing pulls over head of fastener)

Source: FEMA

WFCM Roof Sheathing Requirements

Table 3.10 Roof Sheathing Attachment Requirements for Wind Loads

<table>
<thead>
<tr>
<th>Exposure B</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheathing Location</td>
<td>0.49</td>
<td>1.2</td>
<td>10.2</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Zone</td>
<td>0.49</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Perimeter Edge Zone</td>
<td>0.49</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Copyright © 2013 American Wood Council

Source: FEMA
Roof Framing to Exterior Walls

Connection between the roof framing member (truss or rafter) and top of the wall below for resistance to wind uplift – connectors must attach to both top plates

- Metal connectors are available → follow manufacturers’ guidance
- Fastener schedule should be called out in design plans

Source: FEMA
Roof to Wall Connection

Figure 3.2k Roof to Top Plate Uplift Connection

Twist Straps

Uplift Failure

Source: FEMA
Roof Diaphragm Blocking

Floor Systems (WFCM 3.3)

- **Floor joists**
 - Lateral stability requirements
 - Cantilever length restrictions

- **Floor sheathing**

- **Floor nailing**
 - 8d common nails, 6” oc. edge, 12” o.c. field

- **Floor diaphragm bracing**
 - For wind speeds > 130 mph, must block and nail @ panel edges perpendicular to floor framing in first two bays (see next slide)
Floor Bracing Detail

Figure 3.7b Floor Bracing Endwall

ENDWALL

A A

BLOCKING

SECTION A-A

JOISTS

BLOCKING

I-Joist Web Bracing
Wall Systems (WFCM 3.4)

- **Studs**
 - Limitations on wall heights
 - Requirements for attaching headers to studs to accommodate loads
 - Limitations on stud notching

- **Walls**
 - Double top plate splice requirements
 - Wall sheathing coverage and nailing is specified for shear walls
 - Holddowns are required at ends of shear walls to resist overturning

Inadequate Connections

Source: FEMA
Inadequate Connection

Source: FEMA

Top Wall Plate to Wall Studs
Wall Sheathing to Window Header

Source: FEMA

Window Header to Exterior Wall

Source: FEMA
Reduced Strap Capacity

- Direction of allowable load
- Reduced load

Wall to Floor Framing

- Wall studs
- Bottom plate
- Band joist
- Link #6
- Pile

Source: FEMA
Floor Framing to Support Beam

Source: FEMA

Floor Support Beam to Foundation (Pile)

Source: FEMA
Many variations of wall to foundation connection:
1. Sill to foundation
2. Band joist acts like beam and spans across piers or piles
3. Cantilever over wall
4. Band joist behaves like ledger board

Source: FEMA
Sliding Failure

Diaphragms

- Boundary edges
- Blocking
- Layout of panels – horizontal or vertical
From Diaphragms to Shear Walls

Wind

Diaphragm reaction goes to shear walls

Tension ← Chord → Tension

Distribution of Loads into Shear Walls

Roof (horizontal diaphragm) carries load to end walls

Wind load, \(F \) (lb per sq ft)

Side wall carries load to roof diaphragm at top, and to foundation at bottom

End wall (vertical diaphragm or shear wall) carries load to foundation

\[v \text{ (lb per lin ft of diaphragm width)} = \frac{wL}{2b} \]

\[w \text{ (lb per lin ft of wall)} = \frac{F}{2} \]

\[T \text{ (lb)} = C = v h \]
Shear Wall Methods

- Perforated
- Segmented
- Shear transfer around openings
- Wood structural panels used for shear and uplift
- Wind/Seismic Commentary (2008) and WFCM Section 3.4.4

Lateral and Uplift Loads on Shear Walls

- The shear wall that includes connections designed to resist forces from wind acting perpendicular to the shear wall. This causes tension and compression in the shear wall connections
- Desirable to align shear wall ends with piles for more efficient load transfer

Source: FEMA
Uplift and Lateral Failure

Shear Wall Hold down

Figure 3.8a Corner Stud Hold-down Detail - 3 Studs With Blocking

- Sidewall
- Hold-down
- Blocking at 24” o.c.
- 2-16d Common nails at 10” o.c.
- Corner stud connected to transfer shear
Wall Sheathing for Shear and Uplift

Table 3.4B Shear Walls Resisting Uplift and Shear

<table>
<thead>
<tr>
<th>Exposure B</th>
<th>Wind Speed 3-second gust (mph)</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-yr Wind Speed</td>
<td>Wood Structural Panel Shear Wall Requirements</td>
<td>Shear Wall Nailing</td>
<td>Top & Bottom of Panel Nailing Requirements</td>
<td>Maximum Roof Span (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16" OSB or 15/32" plywood with species of plies having G0.69</td>
<td>8d Common Nails @ 1" panel edge spacing and 12" field edge spacing</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>36</td>
<td>32</td>
<td>24</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7/16" OSB or 15/32" plywood with species of plies having G0.69</td>
<td>8d Common Nails @ 1" panel edge spacing and 12" field edge spacing</td>
<td>2</td>
<td>4</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>15/32" OSB or plywood with species of plies having G0.70</td>
<td>10d Common Nails @ 1" panel edge spacing and 12" field edge spacing</td>
<td>1</td>
<td>6</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>15/32" OSB or plywood with species of plies having G0.70</td>
<td>10d Common Nails @ 1" panel edge spacing and 12" field edge spacing</td>
<td>2</td>
<td>6</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Segmented Shear Wall Sheathing

Table 3.17A Segmented Shear Wall Sheathing Requirements for Wind

<table>
<thead>
<tr>
<th>Exposure B</th>
<th>Wind Speed 3-second gust (mph)</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-yr Wind Speed</td>
<td>Building Dimension, L or W (ft)</td>
<td>Minimum Length of Full Height Sheathing on Exterior Shear Walls Perpendicular to Building Dimension, L or W (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof & Ceiling</td>
<td></td>
<td>12</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.5</td>
<td>2.9</td>
<td>3.4</td>
<td>3.8</td>
<td>4.3</td>
<td>4.9</td>
</tr>
<tr>
<td>16</td>
<td>2.4</td>
<td>2.6</td>
<td>2.0</td>
<td>3.4</td>
<td>3.0</td>
<td>4.5</td>
<td>5.1</td>
<td>5.8</td>
<td>6.5</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>4.2</td>
<td>4.9</td>
<td>5.6</td>
<td>6.4</td>
<td>7.2</td>
<td>8.1</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.6</td>
<td>4.0</td>
<td>4.3</td>
<td>5.1</td>
<td>5.9</td>
<td>6.8</td>
<td>7.7</td>
<td>8.7</td>
<td>9.7</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.2</td>
<td>4.6</td>
<td>5.0</td>
<td>5.9</td>
<td>6.9</td>
<td>7.9</td>
<td>9.0</td>
<td>10.1</td>
<td>11.4</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.8</td>
<td>5.2</td>
<td>5.8</td>
<td>6.8</td>
<td>7.8</td>
<td>9.0</td>
<td>10.2</td>
<td>11.6</td>
<td>13.0</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
<td>7.6</td>
<td>8.5</td>
<td>10.1</td>
<td>11.5</td>
<td>13.0</td>
<td>14.6</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.1</td>
<td>6.6</td>
<td>7.2</td>
<td>8.5</td>
<td>9.8</td>
<td>11.3</td>
<td>12.8</td>
<td>14.5</td>
<td>16.2</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>7.3</td>
<td>8.0</td>
<td>9.2</td>
<td>10.6</td>
<td>12.3</td>
<td>14.1</td>
<td>16.0</td>
<td>18.1</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>7.3</td>
<td>8.0</td>
<td>9.2</td>
<td>10.6</td>
<td>12.3</td>
<td>14.1</td>
<td>16.0</td>
<td>18.1</td>
<td>21.1</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>7.9</td>
<td>8.6</td>
<td>10.0</td>
<td>12.7</td>
<td>14.7</td>
<td>16.9</td>
<td>19.2</td>
<td>21.7</td>
<td>24.3</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>8.5</td>
<td>9.3</td>
<td>10.8</td>
<td>12.7</td>
<td>14.7</td>
<td>16.9</td>
<td>19.2</td>
<td>21.7</td>
<td>24.3</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>9.1</td>
<td>9.9</td>
<td>10.8</td>
<td>12.7</td>
<td>14.7</td>
<td>16.9</td>
<td>19.2</td>
<td>21.7</td>
<td>24.3</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>9.7</td>
<td>10.5</td>
<td>11.6</td>
<td>13.6</td>
<td>15.8</td>
<td>18.0</td>
<td>20.5</td>
<td>23.1</td>
<td>26.3</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>10.3</td>
<td>11.1</td>
<td>12.2</td>
<td>14.4</td>
<td>16.6</td>
<td>19.0</td>
<td>21.5</td>
<td>24.1</td>
<td>27.4</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>10.9</td>
<td>11.7</td>
<td>13.0</td>
<td>15.2</td>
<td>17.5</td>
<td>19.9</td>
<td>22.5</td>
<td>25.1</td>
<td>28.4</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>11.5</td>
<td>12.3</td>
<td>13.6</td>
<td>15.9</td>
<td>18.2</td>
<td>20.6</td>
<td>23.2</td>
<td>25.8</td>
<td>29.1</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>12.1</td>
<td>12.9</td>
<td>14.2</td>
<td>16.5</td>
<td>18.8</td>
<td>21.2</td>
<td>23.8</td>
<td>26.5</td>
<td>29.8</td>
<td>33.5</td>
<td></td>
</tr>
</tbody>
</table>
Moment Frames

Moment frames are used when there is not enough shear wall length or there are large openings in the walls.

Summary – Vertical Load Paths
Summary – Lateral Load Paths

Questions?

www.awc.org
info@awc.org
THANK YOU!

Follow up email with:

- SurveyMonkey, presentation links and info. on Certificates

Instructor: William L. Coulbourne, PE

- Sept. 4th 2012 WFCM: Wind Speed and Design Pressure Determination According to ASCE 7-10
- Sept. 11th 2012 WFCM: Wind Load Distribution on Buildings – Load Paths
- Sept. 18th 2012 WFCM: Connections
- Sept. 25th 2012 WFCM: Foundation Design to Resist Flood Loads and WFCM Calculated Wind Loads
- NEW! Nov. 21st Prescriptive Residential Wood Deck Construction Guide (DCA 6)
- NEW! Jan. 16th AWC’s Code Conforming Wood Design
- http://www.awc.org