The 2018 Edition of the National Design Specification® (NDS®) for Wood Construction was recently published. The updated standard, designated ANSI/AWC NDS-2018, was approved as an ANSI American National Standard on November 30, 2017 (Figure 1). The 2018 NDS was developed by the American Wood Council’s (AWC) Wood Design Standards Committee and is referenced in the 2018 International Building Code (IBC).

Primary changes to the 2018 NDS and the 2018 NDS Supplement: Design Values for Wood Construction include:

- Allowance for incising factors for specific incising patterns and lumber sizes when obtained from the company providing the incising.
- Inclusion of a volume factor for structural composite lumber tension parallel-to-grain values.
- Inclusion of effective shear stiffness for cross-laminated timber.
- Added equation for withdrawal design values for smooth shank stainless steel nails.
- New design provisions for fastener head pull-through.
- Revised provisions for calculation of lateral design values for deformed-shank nails such as Post Frame Ring Shank and Roof Sheathing Ring Shank nails.
- Revised timber rivet design-value tables to limit maximum distance perpendicular to grain between outermost rows of fasteners.
- Revised terminology for Fire Design of Wood Members to clarify the difference between “char depth” and “effective char depth” used in structural calculations. Provisions for connections are also revised to more precisely describe the requirements for protection of the connection from fire exposure.
- Changes to the NDS Supplement include removal of Redwood grades requiring “close grain,” addition of Norway Spruce from Norway to foreign species dimension lumber, and addition of shear-free moduli of elasticity for structural glued laminated softwood timber (glulam).

Structural Composite Lumber

NDS Chapter 8 on Structural Composite Lumber (SCL) was revised to include a volume factor, C_V, for tension parallel-to-grain design values, F_t. The change occurs in NDS Table 8.3.1, Applicability of Adjustment Factors for Structural Composite Lumber, and Section 8.3.6 Volume Factor. A change was also made to clarify that dry service conditions are associated with conditions in which the moisture content of sawn lumber is less than 16%, as in most covered structures. These changes correlate with ASTM D 5456, Standard Specification for Evaluation of Structural Composite Lumber Products.

Cross-Laminated Timber (CLT)

Revisions were made to CLT deflection provisions to include the term $G_{A_{eff}}$ (effective shear stiffness of the CLT section). This is a correlating change with ANSI/APA PRG 320-2017, Standard for Performance-Rated Cross-Laminated Timber, to facilitate the calculation of apparent bending stiffness (EI_{app}) consistent with properties as provided in PRG 320. The revised equation, excerpted from the 2018 NDS, is shown in Figure 2.

![Figure 1. The 2018 NDS is now available and is referenced in the 2018 IBC.](image-url)
Changes to Fastener Design

Revision of NDS connection design provisions was primarily in response to significant increases in Components and Cladding (C&C) roof wind pressures in ASCE 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Wind uplift related changes include new fastener withdrawal and new fastener head pull-through design provisions.

Added Equation for Stainless Steel Nail Withdrawal Strength

An equation for the withdrawal strength of smooth shank stainless steel nails was added. Stainless steel nails have lower withdrawal strength when compared to carbon steel wire nails of the same diameter, due to the reduced surface friction of stainless steel. The differences in withdrawal strength vary with the specific gravity of wood (Figure 3). When stainless steel nails are specified as an alternative to reference smooth shank carbon steel wire (bright or galvanized) nails in wood construction including shear walls and diaphragms, these differences in nail withdrawal strengths must be considered. For example, where smooth shank stainless steel nails are used for roof sheathing attachment, more nails, or nails of greater length or diameter, may be required to provide equivalent withdrawal strength performance for wind uplift.

Roof Sheathing Ring Shank Nails

Roof Sheathing Ring Shank (RSRS) nails were recently added to ASTM F 1667, Standard Specification for Driven Fasteners: Nails, Spikes, and Staples. Design provisions for RSRS nails have been added to the 2018 NDS. RSRS nails, which have higher withdrawal design values than smooth shank nails, provide additional options for efficient attachment of wood structural panel roof sheathing. In many cases, the specification of RSRS nails produces a more reduced roof sheathing attachment schedule than permissible by use of smooth shank nails and enables the use of a single minimum fastener schedule for roof perimeter edge zones and interior zones. Recognition of higher withdrawal strength in the NDS is based on the presence of standardized ring deformations including minimum 1½-inch length of deformations on the nail. In a related change, tabular values for generic threaded-hardened nails, which had no standardized deformation pattern, were deleted to remove an approximate 10% increase in withdrawal values for such nails relative to smooth shank nails of equivalent diameter. The revised NDS provisions allow these generic deformed shank nails, in accordance with ASTM F 1667, to use withdrawal design value equations for smooth shank nails.

Fastener Head Pull-through Provisions

Combined with historical data from tests of lumber and plywood, fastener head pull-through data used to set industry recommendations for wood structural panels was analyzed to develop new fastener head pull-through provisions. Within the range of head diameters, thicknesses, and specific gravities in the NDS, the analysis found that head pull-through is related to the perimeter of the fastener head. New equations based on fastener head diameter, specific gravity, and net side member thickness are as follows:

\[W_{H} = 690 \pi D_{H} G^{2} t_{n} \text{ for } t_{n} \leq 2.5 D_{H} \]

\[W_{H} = 1725 \pi D_{H}^{2} G^{2} \text{ for } t_{n} > 2.5 D_{H} \]

Figure 2. Revised apparent bending stiffness equation for calculating CLT deflection.

Figure 3. Smooth shank nail withdrawal strength (allowable stress design) from wood in accordance with 2018 NDS.
Tabulated pull-through design values, W_{th}, are in pounds.

<table>
<thead>
<tr>
<th>Side Member Specific Gravity 2, G</th>
<th>Head Diameter, D_H (in.)</th>
<th>5/16</th>
<th>3/8</th>
<th>7/16</th>
<th>15/32</th>
<th>1/2</th>
<th>19/32</th>
<th>5/8</th>
<th>23/32</th>
<th>3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.234</td>
<td></td>
<td>40</td>
<td>48</td>
<td>55</td>
<td>59</td>
<td>63</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>0.250</td>
<td></td>
<td>42</td>
<td>51</td>
<td>59</td>
<td>64</td>
<td>68</td>
<td>80</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>0.266</td>
<td></td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>68</td>
<td>72</td>
<td>86</td>
<td>90</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>0.281</td>
<td></td>
<td>48</td>
<td>57</td>
<td>67</td>
<td>71</td>
<td>76</td>
<td>90</td>
<td>95</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>0.297</td>
<td></td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>96</td>
<td>101</td>
<td>116</td>
<td>120</td>
</tr>
<tr>
<td>0.312</td>
<td></td>
<td>53</td>
<td>63</td>
<td>74</td>
<td>79</td>
<td>85</td>
<td>100</td>
<td>106</td>
<td>122</td>
<td>127</td>
</tr>
<tr>
<td>0.344</td>
<td></td>
<td>58</td>
<td>70</td>
<td>82</td>
<td>87</td>
<td>93</td>
<td>111</td>
<td>117</td>
<td>134</td>
<td>140</td>
</tr>
</tbody>
</table>

Figure 4. Excerpt from 2018 NDS Table 12.2F Head Pull-Through, W_{th}.

where:
\[\pi D_H = \text{perimeter for fasteners with round heads} \]
\[D_H = \text{fastener head diameter (in.)} \]
\[G = \text{specific gravity of side member} \]
\[t_{ns} = \text{net side member thickness} \]

An excerpt of tabulated head pull-through values from 2018 NDS Table 12.2F is shown in Figure 4.

For design of roof sheathing fastening to resist wind uplift, the addition of head pull-through allows the controlling roof sheathing fastener spacing to be calculated from the lesser of the head pull-through design value or the fastener withdrawal design value from wood in accordance with the NDS. Previously, such design required the use of a combination of design documents including minimum prescribed spacing criteria for wood panels.

Although not specifically addressed by the added head pull-through equations in the NDS, which assume fasteners with round heads, analysis of underlying data is considered to support the use of the fastener head perimeter model for fasteners with other than round heads such as proprietary nails with clipped or oval heads.

Diameter for Threaded Nails

A change in ASTM F 1575, Standard Test Method for Determining Bending Yield Moment of Nails, clarified that nail bending yield strength, F_{ybn}, is based on the nominal diameter, D, not on the smaller root diameter, D_r, portion which is stressed in bending in the standard test. This change allowed nail moment capacity from testing to be represented by D and F_{ybn} and simplification of lateral design value calculation because D is not always provided for deformed shank nails.

NDS provisions are revised to allow the use of D for deformed shank nails per ASTM F 1667 and applicable bending yield strength for calculating lateral design values.

Lateral Design Values for RSRS and Post Frame Ring Shank Nails

Lateral design values for RSRS and Post Frame Ring Shank nails are tabulated in accordance with revised provisions based on the use of diameter, D, and applicable bending yield strength. For purposes of lateral design, a deformed shank RSRS or Post Frame Ring Shank nail has the same lateral design values as a smooth shank nail of the same diameter, bending yield strength, and length. For Post Frame Ring Shank nails, revised tabulated lateral design values are based on the bending yield strength of low to medium carbon steel, as opposed to the higher values associated with hardened steel nails per ASTM F 1667, due to greater use of low to medium carbon steel nails in construction. Relative to former tabulated lateral design values for the Post Frame Ring Shank Nail, the combined effect of the use of diameter D in calculation and lower bending yield strength resulted in new design values ranging from 7% lower to 3% higher than previously tabulated.

Fire Design of Wood Members

NDS Chapter 16 on Fire Design of Wood Members was revised to provide separate calculations of char depth based on nominal char rates for wood, a_{chr}, and effective char depth for use in structural calculations, a_{eff}. Increased use of wood as a fire protective covering has made it important to provide provisions for calculation of the expected char a_{chr} separate from a_{eff}. Previous versions of the NDS have only provided a_{eff}, which is increased 20% over a_{chr} to account for loss of strength and stiffness due to elevated temperatures in uncharred wood near the char front.

Design of connections for fire was also clarified as follows:

Wood connections, including connectors, fasteners, and portions of wood members included in the connection design, shall be protected from fire exposure for the required fire resistance time. Protection shall be provided by wood, fire-rated gypsum board, other approved materials, or a combination thereof.

These provisions, while not intended to be technically different from current NDS provisions, clarify that protection of all components of the connection (connectors, fasteners, and wood) must be protected from fire exposure for the required time.
Table 3. Trade-offs for bolt design values vs. net section capacities (lbs).

<table>
<thead>
<tr>
<th>Bolt Diameter (in.)</th>
<th>Adjusted Multiple Bolt Capacity (nZ)</th>
<th>Net Section Tension (ZNT)</th>
<th>Row Tear-out (ZRT)</th>
<th>Group Tear-out (ZGT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{7}{8})</td>
<td>8368</td>
<td>7910</td>
<td>7875</td>
<td>6521</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>7174</td>
<td>8121</td>
<td>7875</td>
<td>6627</td>
</tr>
</tbody>
</table>

requirement is imposed to limit local stresses resulting from shrinkage of wood members. Where special detailing is used to address shrinkage, such as the use of slotted holes, the 5-inch limit can be adjusted.

By increasing the spacing between bolt rows, \(s_{row}\), in the example to 5 inches, the group tear-out capacity is increased.

Table 3 reveals trade-offs that can be used in the example to address increased design wind uplift pressures resulting from ASCE 7-16 and an added withdrawal equation for stainless steel smooth shank nails are among the significant changes in this edition. The 2018 NDS is referenced in the 2018 IBC.

On behalf of the industry it represents, AWC is committed to ensuring a resilient, safe, and sustainable built environment. To achieve these objectives, AWC contributes to the development of sound public policies, codes, and regulations which allow for the appropriate and responsible manufacture and use of wood products. We support the utilization of wood products by developing and disseminating consensus standards, comprehensive technical guidelines, and tools for wood design and construction, as well as providing education regarding their application.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Add/revise notation to address effective bending stiffness and effective shear stiffness in the calculation of ((EI)_{\text{app}}) for cross-laminated timber (CLT) (per Chapter 10), addition of fastener head pull-through (per Chapter 12), and changes in Chapter 16 (Fire Design of Wood Members) regarding Section 16.2.1 Char Rate.</td>
</tr>
</tbody>
</table>
| **Chapter 2** | 1. Revise Section 2.1.2 Responsibility of Designer to Adjust for Conditions of Use, to clarify that the designer is responsible for determining the appropriate design value adjustments to use for end use conditions that are addressed in the NDS.
2. Revise Footnote 2 in Table 2.3.2 Frequently Used Load Duration Factors, \(C_D\), to clarify that the impact load duration factor does not apply to wood structural panels. This change reflects current wood structural panel industry recommendations. |
| **Chapter 3** | Revise \(F_b^*\) in Section 3.3.3.8 Beam Stability Factor, to clarify that the volume factor, \(C_V\), shall be included in the calculation of \(F_b^*\) when \(C_V\) is greater than 1.0 – which can be the case for SCL per Section 8.3.6. |
| **Chapter 4** | 1. In Section 4.3.7 Flat Use Factor, \(C_{fu}\), add a new Section 4.3.7.2 to clarify that the application of the flat use factor, \(C_{fu}\), in Adjustment Table 4.3.1 is required for beams and stringers.
2. Revise Section 4.3.8 Incising Factor, \(C_i\), to permit incising factors, \(C_i\), for specific incising patterns and lumber sizes, when obtained from the company providing the incising. This is added as an alternative to using the \(C_i\) values per Table 4.3.8.
3. Revise Section 4.4.2 Wood Trusses, to clarify that the buckling stiffness factor, \(C_T\), for wood trusses, applies not only when the truss is sheathed with “plywood” but also when sheathed with Oriented Strand Board (OSB) panels. Plywood panels and OSB panels are both “wood structural panel (WSP) sheathing.” |
| **Chapter 5** | In Table 5.3.1 Applicability of Adjustment Factors for Structural Glued Laminated Timber, add a footnote to clarify that wet service and temperature adjustment factors, \(C_m\) and \(C_t\), for shear parallel to grain, shall be used to adjust reference radial tension, \(F_{rt}\). |
| **Chapter 7** | Revise Section 7.1.4 Service Conditions, to clarify that dry service conditions are associated with conditions where the moisture content of sawn lumber is less than 16%. |
Chapter 8
Structural Composite Lumber

1. Revise Section 8.1.4 Service Conditions, to clarify that dry service conditions are associated with conditions where the moisture content of sawn lumber is less than 16% for consistency with ASTM D5456, *Standard Specification for Evaluation of Structural Composite Lumber Products*.

2. In Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber, and Section 8.3.6 Volume Factor, C_V, a volume adjustment factor, C_V, applicable to tension, F_t, is added. This is a correlating change with ASTM D5456, which requires development of a volume factor for tension. Footnotes for C_L and C_V are removed from the column headings in Table 8.3.1 and repositioned next to these adjustment factors within the table for greater clarity.

Chapter 10
Cross-Laminated Timber

1. Revise the Format Conversion Factor, K_F, for rolling shear in CLT in Table 10.3.1 Applicability of Adjustment Factors for CLT, from 2.88 to 2.00. This is a correlating change with ASTM D5457, *Standard Specification for Computing Reference Resistance of Wood-Based Materials and Structural Connections for Loads and Resistance Factor Design*. The format conversion factor of 2.00 is consistent with format conversion assumptions implemented for modulus of elasticity and compression perpendicular to grain design properties which are not adjusted for either load duration or time effect factors.

2. Revise Equation 10.4-1 to include the term G_{Aeff} (effective shear stiffness of the CLT section). This is a correlating change with ANSI/APA PRG 320 *Standard for Performance-Rated Cross-Laminated Timber* – to facilitate the calculation of $(EI)_{app}$ per Equation 10.4-1 consistent with properties as provided in PRG 320.

Chapter 11
Mechanical Connections

1. Revise Table 11.3.1 Applicability of Adjustment Factors for Connections, to add Head Pull-Through.

2. Revise Table 11.3.3 Wet Service Factors, C_M, for Connections, as follows:
 - a. Add wet service factors for Round Head Fasteners subjected to Pull-Through Loads.
 - b. Delete reference to Threaded Hardened Nails.
 - c. Add a new footnote for Nails & Spikes subjected to Withdrawal Loads - to indicate the appropriate C_M factor for Roof Sheathing Ring Shank nails and Post-Frame Ring Shank nails.

Chapter 12
Dowel-Type Fasteners

1. Revise Section 12.1.6 General: Nails and Spikes:
 - a. Add language for Roof Sheathing Ring Shank (RSRS) Nails, including reference to new Appendix Table L6.
 - b. Clarify that nails and spikes used in engineered construction shall meet the Supplementary Requirements of ASTM F1667 S1 Nail Bending Yield Strength.
 - c. Add "head diameters," required for new head pull-through design provisions.
d. Remove “Threaded Hardened Nails” in Section 12.1.6.2 and replace with new provision for “other deformed shank nails” per new Section 12.2.3.2d.

2. Revise Section 12.2.3 Reference Withdrawal Design Values: Nails and Spikes, as follows:
 a. Add new Section 12.2.3.1 to address smooth shank nails or spikes as follows:
 i. Utilize terminology “smooth shank” instead of “plain shank” for consistency with ASTM F1667 terminology.
 ii. Clarify that withdrawal design provisions for steel wire nails are applicable for carbon steel nails and spikes including bright or galvanized nails.
 iii. Add provisions in 12.2.3.1b, new Table 12.2D and new equation 12.2-4 for withdrawal design provisions of smooth shank stainless steel nails.
 b. Add new Section 12.2.3.2 to address deformed shank nails as follows:
 i. Add language in 12.3.2a to address withdrawal design provisions for Roof Sheathing Ring Shank (RSRS) nails. Table 12.2E includes withdrawal design values for RSRS nails.
 ii. Add language to permit reference withdrawal design values for uncoated Roof Sheathing Ring Shank or Post-Frame Ring Shank nails to be multiplied by 1.25.
 iii. Add 12.2.3.2d to address other deformed shank nails (e.g. threaded hardened nails) to permit use of withdrawal design provisions for smooth shank nails or spikes in 12.2.3.1.

3. Add new Section 12.2.5 and Table 12.2F to address fastener head pull-through for fasteners with round heads based on pull-through tests results.

4. Revise Section 12.3.7.1 Reference Lateral Design Values: Dowel Diameter, to clarify the fastener diameter to be used in Tables 12.3.1A and 12.3.1B (Yield Limit Equations) for different fastener types. This change specifies use of diameter D for both smooth shank and deformed shank nails in accordance with ASTM F1667 for calculation of lateral design values. It accounts for standard method of determining F_{yb} for nails which is based on diameter D.

5. Revise Tables 12Q and 12R (Reference Lateral Design Values for Single-Shear Connections using WSP side members), to add Roof Sheathing Ring Shank Nails.

6. Revise Table 12S and 12T (Reference Lateral Design Values for Single-Shear Connections) for Post-Frame Ring Shank nails. Updated lateral design values are based on a lower F_{yb} for low-medium carbon steel considered to be more widely used than high-carbon steel, and an increase in the diameter from D_r (root diameter) to D.
<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Timber Rivets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revise Tables 14.2.1A through 14.2.1F, and Table 14.2.2A to limit the tabulated maximum number of timber rivet rows per side and maximum number of timber rivet rows, respectively – to be consistent with the provisions in Section 14.3.1 (Spacing between Rivets) which limits the maximum distance perpendicular to grain between outermost rows of rivets to 12”.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Fire Design of Wood Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revise terminology in Chapter 16 (Fire Design of Wood Members) to clarify the difference between “char depth,” (a_{\text{char}}) and “effective char depth,” (a_{\text{eff}}) used in structural calculations. Section 16.3 (Wood Connections) is also revised to more precisely describe the requirements for protection of the connection from fire exposure.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix L</th>
<th>Typical Dimensions for Dowel-Type Fasteners and Washers</th>
</tr>
</thead>
</table>
| **1. Addition of Head Diameter in Table L3 (Standard Wood Screws) to facilitate calculation of head pull-through.**
2. Addition of new Table L6 (Roof Sheathing Ring Shank Nails). |

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>References are updated to most recent applicable editions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NDS Supplement</th>
</tr>
</thead>
</table>
| **1. Introduction revised to advise users that it is good practice to “check for sources of availability of sizes, species and grades of products specified in this Supplement.”**
2. Northern Softwood Lumber Bureau (NSLB) references replaced with Northeastern Lumber Manufacturers Association (NELMA).
3. Norway Spruce species added to the Spruce-Pine-Fir (South) species combination for lumber.
4. Redwood grades requiring “Close Grain” removed.
5. Modified Table 4C footnote 2 applicable to mechanically graded dimension lumber to show specific modulus of elasticity ranges (e.g. “1.0 to 1.9” for DFL instead of “1.0 and higher”).
6. Modified Table 4D adjustment factors for visually graded timbers for consistency with flat use factor definition per NDS changes.
7. Norway Spruce from Norway added to Table 4F for Non-North American Visually Graded Dimension Lumber.
8. Revised Tables 5A, 5A Expanded, and 5B for structural glued laminated timber to address new format for design values for modulus of elasticity.